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ABSTRACT 
Kidney stones are a common urological problem that, if not identified and treated promptly, 
can result in excruciating pain and complications. This paper suggests a novel method based 
on classification algorithms for kidney stone detection. There are several important steps in the 
approach. An ultrasonic image dataset must be first collected and preprocessed with adaptive 
thresholding, Gaussian filter, and unsharp masking before trying to enhance the picture and 
remove noise. The dataset is then shortly separated into train and test sets. Data augmentation 
techniques are used on the training set to improve its diversity. The individual CNN 
architecture, which is designed for the feature extraction process from utile images. It consists 
of multiple convolution layers, max-pooling layers, ReLU (rectified linear unit) layers etc. and 
the model is trained on a train set using Adam optimizer. The ultrasound dataset is processed 
to extract Grey-Level Cooccurrence Matrix (GLCM) features and these are concatenated with 
the CNN extracted features. We concatenate the extracted features and employ a Support 
Vector Machine (SVM) classifier to learn. Testing: In the testing phase, accuracy as well as 
sensitivity and specificity is computed for the learned classifier on the test dataset. This paper 
provides a robust method for the detection of kidney stones based on classification algorithms. 
The method it proposes can help in swifter detection of stone formation in kidneys than its 
changes and detection for enhanced patient outcomes. 
Obtained results via the proposed method reached 93.22%, with a sensitivity of 92,5% and 
specificity of 93.59%. 
Keywords: kidney stone, ultrasound, classification, Convolutional Neural Network, Support 
Vector Machine, Grey-Level Co-occurrence Matrix. 
 

1. INTRODUCTION 
Also referred to as kidney stones, renal calculi are referred to as hard deposits that form within 
the kidney. They comprise of a variety of salts and minerals that have the ability to crystallize 
and stick together, including uric acid, calcium and oxalate. Urolithiasis or kidney stones are 
one of the most painful conditions that a human being can have and can cause a tremendous 
amount of pain. The management of kidney stones differs according to the size and position of 
the stones but in most cases offers analgesics, hydration, and in some cases surgery or other 
routes for stone removal[1]. 
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Because kidney stones are a major health concern in many people worldwide, they should be 
treated immediately. Their diagnosis is therefore important in medical imaging [2]. Traditional 
methods of detecting kidney stones on ultrasound images use a lot of manual interpretation, 
which can be laborious and subjective. Convolutional Neural Nets, or CNNs, have recently 
shown much promise for automated medical image recognition and interpretation. CNNs are 
perfect for tasks such as kidney stone detection because they can automatically detect features 
from images[3].  
Applying filters such as sharp masking and Gaussian filters on ultrasound image datasets to 
improve the performance of our model yields real ultrasound datasets By increasing the clarity 
and quality of images, such filters weaken the ability of CNN and GLCM to extract important 
features.  
In this paper, we present a new method that combines Support Vector Machines (SVMs) for 
classification with CNN and GLCM for feature extraction. CNN is used to extract relevant 
features from ultrasound images, capturing the details necessary to accurately identify kidney 
stones[4]. Then, The GLCM features are combined with the CNN features to generate feature 
vectors for the training and testing sets. Using these features, SVM is trained to distinguish 
between images with and without kidney stones. 
 
Our goal is to create a reliable and accurate kidney stone detection system using image 
enhancement methods, integration of CNN and GLCM for feature extraction, and SVM for 
classification. This system can increase the accuracy and efficiency of kidney stone detection, 
helping patients, as detailed in the block diagram in Figure 1. 
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Figure 1: classification block diagram. 
 
1.1  Related work 
Kumar et al. (2012) compared neural network algorithms for kidney stone diagnosis, finding 
that a multilayer perceptron with backpropagation achieved the highest accuracy[5]. Verma et 
al. (2017) addressed challenges in low-resolution ultrasound images, achieving high accuracy 
with KNN and SVM in detecting kidney stones[6]. Chak et al. (2019) aimed to automatically 
detect kidney stones using digital signal processing, achieving high accuracy by combining 
ANN with SVM classification[7]. M. Akshaya et al. (2020) proposed a Back Propagation 
Network (BPN) with Principal Component Analysis (PCA) for feature extraction, achieving 
superior accuracy in detecting kidney stones in Magnetic Resonance (MR) images, even with 
noise[8]. K. Yildirim et al. (2021) developed a deep-learning model for coronal Computed 
Tomography (CT) images, achieving 96.82% accuracy in detecting kidney stones without 
image segmentation, highlighting the need for diverse datasets[9]. I. Aksakalli et al. (2021) 
evaluated machine learning methods for kidney stone detection, finding Decision Trees (DT) 
to be the most effective with an 85.3% success rate, emphasizing accurate detection for 
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diagnosing kidney diseases[10]. K. Chaitanya Nagu et al. (2021) employed the Gray Level Co-
occurrence Matrix (GLCM) and Fuzzy C-Mean (FCM) for early detection in CT images, 
achieving a 98.8% accuracy rate using Back Propagation Network (BPN)[11]. These studies 
collectively highlight the advancements in using Artificial Intelligence (AI) and machine 
learning for kidney stone detection, offering efficient and accurate diagnosis methods. 
1.2 Description of dataset 
The renal ultrasound imaging data sets are the source of the dataset that we utilized to interpret 
our suggested method. Our renal ultrasound image model's objective is to assess how well 
various feature selection and machine learning approaches function. In this study, we utilize a 
real ultrasound dataset consisting of images captured from patients with suspected kidney 
stones. The dataset is characterized by its diversity, containing images with varying stone sizes, 
shapes, and locations within the kidney. This diversity is essential for training robust models 
capable of accurately detecting kidney stones in different scenarios. The majority of the 
provided dataset is standard for the area of ultrasound image study[12]. 
At the Doctor's Clinic, Specialty Diagnostic Radiology, Ali Asim, Iraq, Nineveh, data is 
collected from a single healthy participant 300 images of cases with normal kidneys and others 
with kidney stones, as stated by the provided data has been separated into two categories: 
kidney without stone and kidney with stone. To determine the overall machine learning 
algorithm's accuracy for classification, all of the supplied ultrasound imaging data of the kidney 
is divided into three main sections: the Training set, Test set, and Validation data. 
 
2. METHODOLOGY 
To explore and apply the proposed method, we utilized a real ultrasound dataset and MATLAB 
environment for implementation. 
 
2.1 Data preprocessing  
Although ultrasound imaging is a widely used and valuable diagnostic tool, it has some 
limitations compared to other imaging modalities such as minimally invasive and non-
minimally illuminated ultrasound imaging resolution may be small compared to other imaging 
modalities such as magnetic resonance imaging (MRI) ) or computed tomography (CT) scans 
Become comprehensive, Ultrasound imaging is also a safe technique because it so not emit 
ionizing radiation[13], making it especially useful for those with nephrolithiasis Data were 
obtained which were preprocessed for enhancement by repeating images using Lanczos 
interpolation (3rd order), it is known that Lanczos interpolation preserves information and is 
good for image size conversion, The appropriate Delivering results is known this is important 
to ensure that the rest of the process is successfully completed[14]. 
 
2.2 Removing background and small objects 
Converts the image to grayscale, adaptive thresholding using Otsu's Method applies adaptive 
thresholding to create a binary image, adaptive thresholding dynamically determines thresholds 
for local regions based on the local histogram, this adaptability makes Otsu's method more 
robust in handling variations in lighting and contrast within an image than the standard 
thresholding[15]. Fills holes in the binary image, removes small objects from the binary image, 
preprocesses the original image using the mask applies the binary mask to the original image, 
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adjusts the contrast and brightness of the preprocessed image, and after adjustments converts 
the adjusted RGB image to grayscale, applies Gaussian filtering to the final grayscale image 
for smoothing, and applies un-sharp masking to the final grayscale image for sharpening, as 
shown in Figure 2. 

 
Figure 2:(a) original image (b) grayscale image (c) binary image (d) filled image (e) cleaned 
image (f) preprocessed image (g) adjusted image (h) smoothed image (i) sharpened image. 
 
2.3 Split dataset 
The dataset is split into training and testing sets using the `splitEachLabel` function. This 
function randomly splits the images while ensuring that each label has the specified proportion 
in both sets, with 70% of the data used for training, this value was adopted because, after several 
experiments of separating values between 60% and 80% for training and the rest for testing, I 
found that the best result for training was with a value of 70% for training and the rest for 
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testing. This type of split is commonly used to train machine learning models and evaluate their 
performance on unseen data[16]. 
2.4 Data augmentation  
It is a technique used to artificially increase the size of a dataset by creating modified versions 
of images in the original dataset. This can help improve the performance and robustness of 
machine learning models, especially when the original dataset is limited in size[17]. The data 
augmentation settings increase the effective size of the dataset by applying random 
transformations to the images, this helps in improving the generalization of the model and 
reducing overfitting by providing the network with more diverse examples to learn from. 
The original dataset contains 300 images, and the data augmentation settings specified will 
introduce variability into each image, effectively increasing the dataset size, Random X 
Reflection and Random Y Reflection each image can be flipped horizontally and/or vertically, 
effectively doubling the dataset size (600 images), Random Rotation each image can be rotated 
by a random angle within the specified range (-10 to 10 degrees), increasing the dataset size 
further, Random X Scale and Random Y Scale each image can be scaled along the horizontal 
and/or vertical axis by a random factor within the specified range (0.8 to 1.2), this can increase 
the dataset size even more. 
 
2.5 CNN Model Definition 
CNN is designed to handle data that is organized into grids, such as audio or image files. CNNs 
perform very well in problems involving image recognition and classification. They are made 
up of many layers that are trained to identify different aspects of the input data, starting from 
simple features like edges and shapes in early layers, to more complex features in deeper 
layers[18]. The network then uses these learned features to make predictions about the input 
data, such as identifying objects in images, because CNN architecture provided outstanding 
classification, it was chosen to construct the kidney stone detection system[19]. The CNN 
architecture is suitable for feature extraction from ultrasound images. Here's a breakdown of 
the CNN layers and their functions: 
 
Image Input Layer: Accepts input images of size 227x227x3. 
Convolutional Layers: Three sets of convolutional layers followed by ReLU activation 
functions, these layers help extract various features from the input images. 
Max Pooling Layers: Three max-pooling layers with a stride of 2, these layers reduce the spatial 
dimensions of the feature maps, helping to retain the most important features. 
Fully Connected Layers: Two fully connected layers with 1024 and `numClasses` neurons, 
respectively, followed by ReLU activation, these layers further extract features and prepare the 
features for classification. 
Softmax and Classification Layer: The softmax layer converts the final layer activations into 
class probabilities, and the classification layer specifies the output classes for the network, the 
block diagram of CNN is shown in Figure 3. 
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Figure 3: diagram of a basic convolutional neural network (CNN) architecture. 

 
2.6 Training the CNN 
Training the CNN involves using the `trainNetwork` function to train the network on the 
augmented training dataset, the `layers` variable defines a custom CNN architecture suitable 
for feature extraction from ultrasound images. It consists of several convolutional layers with 
relu activation functions, max-pooling layers for downsampling, and fully connected layers for 
classification. Dropout layers are also included to reduce overfitting[20]. 
The `options` variable specifies the training options, including the use of the Adam optimizer 
(Adam), Adam optimizer is commonly used in machine learning for various tasks[21], mini-
batch size of 32, maximum epochs of 100 epochs, the initial learning rate of 1e-4, validation 
data, and other parameters, these options control how the network is trained and how the 
training progress is monitored. 
 
2.7 GLCM Feature Extraction 
Identifying meaningful texts or forces is a methodology in itself, it involves identifying and 
extracting specific shapes or forces from the image These forces work ships as systematically 
skilled algorithms of helps to understand their path and make basic predictions based on 
omissions[22]. 
GLCM is an image processing method to describe the texture of an image. The spatial 
arrangement of the intensity levels in an image is called its texture, and can provide important 
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information about the surface properties of objects in an image A GLCM consists of a 
rectangular matrix where each (i, j) denotes the frequency of two pixels in the image at a certain 
offset and a given direction The direction containing f indicates where the two point, while the 
offset sets their relative position[23]. 
Ultrasound images are processed to obtain GLCM features as a type of texture analysis, for 
each of the four offset directions, four features (Contrast, Homogeneity, Energy, and 
Correlation) are computed, yielding a total of 16 features per image[24].To ensure the matrix 
has the right size and structure, it is customary to start with zeros before the GLCM features 
are computed and placed in it. This step avoids any unexpected behavior or mistakes that can 
arise from improperly initializing the matrix before populating it with the computed 
features[25]. These characteristics record texture information at a lower level. Conversely, the 
CNN features extract more complex semantic information from the images. Kidney stone 
detection ultrasound image datasets are used to train the CNN model. For both the training and 
testing datasets, features are taken from the learned CNN model after training. The activations 
function is used to achieve this; it takes features from a given layer (fc_1) and outputs them as 
rows because the (fc_1) layer often contains features that are more abstract and high-level 
compared to earlier layers and the (fc_1)  layer typically has a large number of units, which 
means the features extracted from this layer have a high dimensionality[26], by combining 
these GLCM and CNN features, the model can potentially improve its ability to classify kidney 
images accurately. 
 
2.8 Support Vector Machine (SVM) Classifier 
Support Vector Machines (SVMs) are a type of supervised learning model used for 
classification and regression tasks, many benefits come with it, including a strong theoretical 
base, global optimization, the solution's sparsity, nonlinearity, and generalization[27].By 
establishing a decision boundary between two classes, it hopes to make it possible to predict 
labels based on one or more feature vectors. The orientation of this decision boundary, often 
referred to as the hyperplane, is designed to place it as far away as feasible from the nearest 
data points from each class, support vectors are these nearest points[28]. 
Given the following labelled training dataset: 
(𝑋!, 𝑌!),……, (𝑋", 𝑌"),	𝑋#	 ∈	 𝑅% 	and  𝑌# ∈ (-1,+1) where 𝑌# are the class labels (positive or 
negative) of training compound i, and xi is its feature vector representation.  
Then, 𝑤𝑥& 	+ b=0 can be used to define the ideal hyperplane.  
where x is the input feature vector, b is the bias, and w is the weight vector.  
For every component in the training set, the w and b would meet the following inequalities:  
If 𝑌#= 1, then 𝑤𝑥#& + b ≥ +1.  
If 𝑌#= –1, then 𝑤𝑥#&+ b ≤ −1.  
Finding w and b so that the hyperplane divides the data and maximizes the margin is the goal 
of training an SVM model. 1 / || w || 2. Vectors 𝑋#are designated as support vectors if |𝑌# | (𝑤𝑥#&+ 
b) = 1. Figure 4 explains this operation. 
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Figure 4: SVM model two classes (red against blue) where classified. 
 
 After extracting the GLCM features, they are combined with the CNN features to form a more 
comprehensive feature set for each image. This combined feature set is then used as input to 
the SVM classifier, enhancing its ability to distinguish between different classes of kidney 
images. The selected elements from the training dataset (`XTrain`) and the corresponding 
labels (`train.Labels`) are used as input to the `fitcsvm` function.`XTrain` is the matrix on 
which each row depends there for a type of the image , and `train`. Labels` contains the 
corresponding labels (e.g., normal or abnormal) for each image in the training data set. In 
addition, GLCM (Gray-Level Co-occurrence Matrix) features are computed for each image 
and combined with CNN features to create accurate features [29]. These GLCM features 
capture texture information in images, generating SVM classification the ability to discriminate 
between classes is greater kidney models SVM model (`SVMModel). `) Implementation of 
combined features After being trained to recognize patterns among the features that distinguish 
between images in different classes, the trained SVM models can then be based on the 
parameters learned from the training data to distribute new images. Training of the SVM 
classifier is necessary to identify discriminatory features in the dataset that can distinguish 
between kidney images. The SVM learns decision thresholds in the feature space separating 
classes, enabling it to classify new unseen images more efficiently. Training progress is shown 
in Figure 5.  
2.9 Evaluate the SVM classifier 
The test dataset can be used to test the trained SVM model to assess its performance on unseen 
data, the accuracy of SVM classification is performed from real labels (`test.Labels`) using 
predicted labels (`YPred`). compare it to it. achieved 93.22% accuracy, 92.5% sensitivity, . The 
specificity was 93.59%, indicative of kidney stones. A powerful approach to classify medical 
images is to train an SVM classifier with features retrieved from CNN and GLCM. It takes 
advantage of the capabilities of GLCM to encode texture information and the capabilities of 
CNN to extract complex features from images. Then to improve the performance of the 
classifier, SVM combines both types of features to produce an efficient classifier in high-
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dimensional features[30]. 
 

 
Figure 5: training progress of 100 epochs and 500 iterations for kidney stone detection. 
3. RESULT AND DISCUSSION  
A specially designed convolutional neural network (CNN) architecture has been developed to 
extract features from ultrasound images. The CNN contains multiple convolutional layers, 
max-pooling layers, rectified linear unit (ReLU) activation functions, and the training set is 
trained with an Adam optimizer in addition to gray-level co-occurrence matrix (GLCM) 
features extracted from ultrasound images , are added to the features extracted by CNN and 
then the Support Vector Machine (SVM) classifier is trained with this combination of features. 
The performance of the trained classifier is evaluated on a test set, and metrics such as accuracy, 
sensitivity, and specificity are calculated. This method provides a reliable and accurate method 
for the diagnosis of kidney stones by a classification system. The proposed method achieves 
an accuracy of 93.22%, with a sensitivity of 92.5% and a specificity of 93.59%, which can 
improve patient outcomes by improving kidney stone detection and treatment. 
4. CONCLUSIONS 
This paper proposes a novel method that combines CNN and GLCM for feature extraction and 
SVM for classification to provide accurate and efficient detection of kidney stones CNN is 
used to capture complex information from ultrasound images in, which is necessary for the 
accurate diagnosis of kidney stones. These features are then combined with texture features 
extracted by GLCM. The resulting feature vector is used to train an SVM classifier to 
distinguish images with and without kidney stones. This combined approach takes advantage 
of the strengths of CNN and GLCM in capturing relevant features from images. Our approach 
which includes image enhancement, CNN feature extraction, and SVM classification methods 
exhibits great potential to detect real conceptual gems, thus providing a new, more accurate 
method, etu effective, and not a personality replacement for traditional manual alternatives. 
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