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ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition that requires early
detection for timely intervention. In this study, a comprehensive machine learning framework was
developed and evaluated for predicting ASD traits using a behavioral and demographic dataset
comprising 1,985 records and 28 features. Eight models, including Logistic Regression, Support
Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient
Boosting, XGBoost, and LightGBM, were systematically assessed.

Experimental results demonstrated that advanced classifiers achieved superior predictive performance,
with SVM attaining the highest ROC-AUC (99.90) and Random Forest yielding the highest test
accuracy (97.98%). Robust analysis using calibration curves confirmed that probability estimates were
well-aligned with true outcomes, while bootstrap confidence intervals validated the stability of the
reported metrics. Furthermore, interpretability was incorporated through SHAP analysis, which
identified speech delay, family history of ASD, anxiety disorder, and specific AQ-10 items as key
predictive features. These findings highlight the potential of explainable and reliable computational
models for supporting ASD screening in clinical and community settings. The proposed framework
balances predictive accuracy with interpretability and reliability, addressing key barriers to the
adoption of data-driven approaches in healthcare decision support.

Keywords: Autism Spectrum Disorder (ASD), Machine Learning, Explainable Artificial Intelligence
(XAI), Model Calibration, Predictive Modeling.

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by
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persistent deficits in social communication, restricted interests, and repetitive behaviors. The global
prevalence of ASD has increased substantially in recent decades, with current estimates suggesting
that approximately one in 100 children are affected worldwide [1]. Early and accurate identification
of ASD is of paramount importance, as timely intervention has been shown to improve long-term
developmental, social, and educational outcomes. However, traditional diagnostic practices remain
resource-intensive, relying on expert-administered behavioral assessments that are time-consuming,
costly, and often inaccessible in under-resourced regions [2]. These limitations underscore the urgent
need for scalable, data-driven screening approaches that can complement conventional diagnostic
processes.

Data-driven computational methods have shown strong potential in the context of mental health and
developmental disorders. By leveraging demographic, behavioral, and clinical questionnaire data,
these approaches can identify complex patterns associated with ASD and enable rapid risk
stratification [3]. Previous studies have demonstrated promising predictive performance using
classical algorithms such as support vector machines (SVM), random forests, and gradient boosting,
as well as more advanced deep learning architectures [4]. While these methods have achieved high
levels of accuracy, challenges remain concerning robustness, interpretability, and generalizability
across diverse populations.

Recent developments in explainable modeling provide a pathway to bridge the gap between predictive
performance and clinical adoption. For example, techniques such as SHAP (Shapley Additive
Explanations) allow clinicians and researchers to understand how individual features contribute to
model predictions, thereby fostering trust and transparency in computational decision support [5]. At
the same time, rigorous evaluation frameworks—such as calibration analysis, bootstrap confidence
intervals, and cost-sensitive learning—have been introduced to ensure that models are not only
accurate but also reliable and ethically aligned with healthcare priorities [6]. Despite these advances,
few ASD-focused studies have systematically combined predictive modeling with interpretability and
robustness assessments, leaving a gap in clinically meaningful research.

In this study, we present a computational framework for ASD screening that emphasizes predictive
performance, interpretability, and robustness. Using demographic and behavioral features while
excluding direct diagnostic scales to avoid data leakage, we systematically evaluate multiple
classifiers, including support vector machines, random forests, and boosting methods. Our approach
incorporates cross-validation for performance stability, calibration curves for probability reliability,
bootstrap confidence intervals for statistical rigor, and SHAP-based interpretability for transparent
decision support. By addressing both methodological rigor and clinical interpretability, this work
contributes to the development of scalable and trustworthy tools for early ASD detection, with
potential applications in healthcare and educational settings.

2. RELATED WORK

Research on autism spectrum disorder (ASD) has increasingly explored behavioral, demographic, and
clinical questionnaire data to support early detection. Several studies have focused on the use of
screening tools such as the Autism Spectrum Quotient (AQ) and the Childhood Autism Rating Scale
(CARS) for developing predictive approaches. For example, Bone et al. demonstrated that
computational methods could enhance the efficiency of autism screening by identifying key behavioral
markers from standardized assessments, achieving classification accuracies of up to 85% [7].
Similarly, Tariq et al. introduced mobile-based applications designed to provide accessible and
scalable autism risk assessment in community settings, reporting a sensitivity of 90% on short home
video samples [8].
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Classical ML algorithms have frequently been employed in ASD prediction tasks. For instance, Abbas
et al. applied decision trees and support vector machines on behavioral datasets, reporting accuracies
in the range of 80-86% [9]. El Naqa et al. highlighted the potential of ensemble methods such as
random forests and gradient boosting in clinical decision support systems, emphasizing their
robustness against noisy healthcare data [10]. More recently, predictive frameworks using XGBoost
and LightGBM have shown enhanced performance on health-related tabular datasets, with ASD-
focused studies reporting accuracy values approaching 90% [11]. The rise of deep learning has further
expanded ASD research. Xu et al. developed convolutional neural networks to classify ASD from
facial images, achieving an accuracy of 92% [12], while Heinsfeld et al. utilized functional MRI data
with autoencoders for neuroimaging-based ASD classification, reaching balanced accuracies of
approximately 70—75% on the ABIDE dataset [ 13]. These studies highlight the flexibility of ML across
diverse modalities, though behavioral and questionnaire-based data remain attractive due to their lower
acquisition cost and strong predictive signal.

Interpretability remains a critical barrier to clinical adoption of ML in ASD. Several studies have
adopted explainable Al (XAI) frameworks to enhance transparency. Lundberg, Erion, and Lee
expanded SHAP applications to healthcare, demonstrating their ability to attribute patient-level risk
factors with consistency, though quantitative improvements in performance were not reported [14].
Lundervold and Lundervold reviewed interpretable ML in psychiatry and emphasized that models
balancing predictive accuracy (70-90%) with transparency are more likely to gain clinician trust [15].
More recently, Karim et al. applied SHAP to ASD screening models, showing that key features such
as speech delay and anxiety consistently drove predictions in models with test accuracies above 88%
[16].

Robustness and fairness are also critical in deploying ASD ML frameworks. Calibration studies in
medical Al have shown that many high-performing classifiers, despite reporting accuracies exceeding
90%, remain poorly calibrated and thus risk misrepresenting clinical probability estimates [17]. In
addition, fairness-aware models have been advocated to prevent demographic bias in
neurodevelopmental predictions, particularly where subgroup accuracies diverge significantly [18].
Bootstrap confidence intervals and resampling-based methods have been proposed to quantify
uncertainty in reported accuracies and F1 scores, ensuring reproducibility and reliability in healthcare
ML [19].

Collectively, these studies demonstrate substantial progress in applying ML to ASD detection, with
reported accuracies generally ranging from 75% to 92% depending on the dataset and feature modality.
However, few works have simultaneously integrated high-performance predictive models with
interpretability (e.g., SHAP), robustness (e.g., calibration and CIs), and fairness considerations in ASD
screening contexts. This gap motivates the present work, which aims to design a holistic ML
framework for ASD detection that balances predictive accuracy with clinical transparency and
reliability.

3. PROPOSED METHODOLOGY

The overall methodology for ASD traits prediction is illustrated in Figure 1. The process begins with
data loading and preprocessing, where raw data are cleaned by handling missing values, removing
irrelevant identifiers, and standardizing formats. Next, feature engineering and encoding are applied
to transform categorical attributes into numerical form and ensure compatibility with machine learning
algorithms. The dataset was divided into training and testing subsets, followed by normalization to
stabilize the learning process. During the model development stage, multiple classifiers were trained
and optimized using cross-validation to ensure robustness and reduce overfitting. Model interpretation
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and validation were subsequently conducted through SHAP-based explainability to highlight key
feature contributions, while calibration curves were employed to assess the reliability of probability
estimates, thereby ensuring both transparency and clinical trustworthiness.
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Figure 1. Proposed ASD traits prediction pipeline. The framework consists of sequential stages: data
preprocessing, feature engineering and encoding, data splitting and scaling, model training with cross-
validation, and final interpretation and validation using SHAP explainability and calibration analysis.

3.1 Dataset Description

The dataset employed in this study comprises 1,985 records and 28 features, with the final column
representing the binary target variable (ASD_traits), denoting whether a child is likely to exhibit ASD
traits in the future (0 = No, 1 = Yes). It encompasses a diverse range of variables, including
standardized screening measures such as the Autism Spectrum Quotient (AQ-10), Social
Responsiveness Scale (SRS), Q-Chat-10 Score, and Childhood Autism Rating Scale (CARS). In
addition, demographic attributes (age, sex, ethnicity), family history of ASD, and clinical indicators
such as speech delay, learning disorders, genetic disorders, depression, developmental delay, anxiety,
and jaundice are incorporated, ensuring a comprehensive representation of behavioral, familial, and
medical factors. The dataset was curated by the Autism Research Group at the University of Arkansas
(Computer Science Department) to support predictive modeling and research into early detection of
autism, making it a comprehensive resource for investigating behavioral, clinical, and genetic risk
factors associated with ASD. The results in Figure 2 indicate a strong association between speech
delay/language disorder and the presence of ASD traits. Children with speech delay (coded as 1)
exhibit a noticeably higher proportion of ASDpositive cases compared to those without speech delay.
This highlights speech and language impairment as an important predictive feature in ASD screening.
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Figure 2. Distribution of ASD traits by speech delay/language disorder. The stacked bar chart shows
the proportion of individuals with and without ASD traits (0 = No, 1 = Yes) across groups with speech
delay/language disorder (1 = Yes) and without (0 = No).

3.2 Data Preprocessing

The dataset was cleaned and transformed before model development. Unnecessary identifiers (e.g.,
patient ID) were removed, and missing values were imputed — median for numerical features and
mode for categorical features. Binary categorical variables (Yes/No) were mapped to {1,0}, while
multi-class categorical variables were label-encoded. Diagnostic features such as the Childhood
Autism Rating Scale and Qchat-10 Score were excluded to avoid data leakage. The dataset was then
split into 80% training and 20% testing sets using stratified sampling to preserve class balance.
Numerical features were standardized using z-score normalization: x'= (x

-w/o

3.3 Model Training and Cross-Validation

Eight machine learning algorithms were evaluated to classify autism spectrum disorder (ASD) traits.
Each model was trained on the reduced feature set and carefully tuned with regularization to minimize
overfitting. A 5-fold cross-validation (CV) scheme was applied on the training set to ensure
generalization, and the final test results were reported on the held-out test set. The CV score is defined
as:

CV_Score = (1/k) £ Mi, where Mi is the metric (F1 or ROC-AUC) from fold i, and k = 5.
Logistic Regression (LR)
Logistic Regression is a linear classification algorithm that models the probability of the target class

using the logistic (sigmoid) function. It assumes a linear relationship between the features and the log-
odds of the outcome:

P(y=1[x)=1/(1 +e"-(w - x+Db))
where w is the weight vector and b is the bias term. Despite its simplicity, LR provides strong baselines
in many medical applications.

Support Vector Machine (SVM)

Support Vector Machine constructs a decision boundary that maximizes the margin between classes.
For binary classification, the decision function is:

f(x) = sign(w - x+b)
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SVM can also leverage kernel functions to handle non-linear separability, such as the Radial Basis
Function (RBF) kernel.

k-Nearest Neighbors (KNN)

KNN is a non-parametric algorithm that predicts class labels based on the majority vote of the k nearest
neighbors in the feature space:

¥y=mode{ yi:xi Nk(x)}

KNN is simple and interpretable but sensitive to the choice of k and feature scaling.

Decision Tree (DT)

Decision Trees partition the feature space recursively using criteria such as Information Gain or Gini
Impurity. The model assigns class labels based on leaf nodes reached during traversal. While
interpretable, standalone trees tend to overfit, motivating the use of ensemble methods.

Random Forest (RF)

Random Forest is an ensemble method that combines multiple decision trees trained on bootstrapped
subsets of the data. Each tree contributes to the final prediction through majority voting:

¥ =mode{ h1(x), h2(x), ..., hT(x) }

where hi(x) represents the prediction from the i-th tree. RF is robust to noise and reduces variance
compared to a single decision tree.

Gradient Boosting (GB)

Gradient Boosting builds trees sequentially, where each new tree attempts to correct the errors of its
predecessor. At step m, the boosted model is updated as:

Fm(x) = Fm-1(x) + ym hm(x)
where hm(x) is the weak learner and ym is the learning rate. GB is highly effective but can be prone
to overfitting without regularization.

Extreme Gradient Boosting (XGBoost)

XGBoost is a scalable and regularized variant of Gradient Boosting. It optimizes an objective function
defined as:

Obj =X I(yi, i) + X Q(fk)
where 1 is the loss function (e.g., logistic loss), and €(fk) is the regularization term to control model

complexity. XGBoost introduces system optimizations and shrinkage, making it efficient for large
datasets.

Light Gradient Boosting Machine (LightGBM)

LightGBM is a gradient boosting framework optimized for speed and memory efficiency. It uses
histogrambased splitting and leaf-wise tree growth strategies to improve accuracy while reducing
training time. LightGBM is particularly suited for high-dimensional and large-scale datasets.

3.4 Performance Metrics

To comprehensively evaluate the performance of the machine learning classifiers, multiple metrics
were considered. These metrics ensure that the models are not only accurate overall but also effective
in identifying ASD-positive cases and reliable in their predictions. The selected evaluation criteria
include Accuracy, Precision, Recall, F1-Score, and the Area Under the Receiver Operating
Characteristic Curve (ROC-AUC). Each metric is mathematically defined as follows: Accuracy
Accuracy measures the proportion of correctly classified instances among the total number of
instances: Accuracy = (TP + TN) / (TP + TN + FP + FN) where TP = True Positives, TN = True

7236



Frontiers in Health Informatics www. healthinformaticsjournal.com
ISSN-Online: 2676-7104

2024; Vol-13: Issue 8 Open Access

Negatives, FP = False Positives, and FN = False Negatives.

Precision

Precision quantifies the proportion of correctly predicted positive cases out of all predicted positives:
Precision = TP / (TP + FP)

High precision indicates a low false-positive rate, which is crucial for clinical decision-making. Recall
(Sensitivity)

Recall, or Sensitivity, measures the proportion of actual positives that were correctly identified: Recall
=TP /(TP + FN)

High recall ensures that most ASD-positive cases are detected, minimizing false negatives.

F1-Score

The F1-Score is the harmonic mean of Precision and Recall, providing a balanced metric when there
is an uneven class distribution:

F1 =2 x (Precision x Recall) / (Precision + Recall)

This score is particularly useful in healthcare datasets where both false positives and false negatives
have critical implications.

ROC-AUC

The Area Under the Receiver Operating Characteristic Curve (ROC-AUC) evaluates the model’s
ability to distinguish between positive and negative classes across varying thresholds. It is defined in
terms of True Positive Rate (TPR) and False Positive Rate (FPR):

TPR =TP /(TP + FN) FPR =FP / (FP + TN)

A higher ROC-AUC indicates better discriminative ability, with a value of 1.0 representing perfect
classification.

4. EXPERIMENTAL RESULTS

Table 1 presents the comparative performance of eight machine learning models evaluated on the ASD
traits dataset. The results demonstrate that nearly all models achieved high predictive performance,
with test accuracies exceeding 96%, except for the Decision Tree baseline.

Logistic Regression provided a strong baseline, achieving 96.22% accuracy, 96.30% precision,
96.74% recall, and 96.52% F1-score. Its ROC-AUC score of 97.81 further confirmed reliable
discriminative ability, highlighting the dataset’s suitability for even linear models.

Support Vector Machine (SVM) outperformed most classifiers, achieving 97.73% accuracy and
97.96% Flscore, alongside the highest ROC-AUC of 99.90. These results indicate that SVM offered
the best balance between precision (98.13) and recall (97.97), making it highly effective for
distinguishing ASD-positive cases without sacrificing sensitivity.

KNN achieved comparable results to Logistic Regression, with 96.73% accuracy and 96.96% F1-
score, but slightly lagged in recall (96.30). Its ROC-AUC of 99.52 suggested strong ranking ability,
although its overall generalization was slightly weaker than ensemble models.

Decision Tree, while interpretable, showed the weakest performance across all models, with only
91.69% accuracy and 92.00% F1-score. Its relatively low cross-validation scores (CV_F1 = 90.84,
CV_ROC =96.88) highlighted overfitting tendencies and poor generalization, reinforcing the need for
ensemble-based approaches. Ensemble methods provided superior stability and accuracy. Random
Forest achieved the highest test accuracy of 97.98% and an F1-score of 97.92, supported by strong
recall (98.14). Gradient Boosting also performed well with 97.48% accuracy and 97.46% F1,
demonstrating competitive balance between sensitivity and precision. Both methods consistently
yielded ROC-AUC scores above 99.8, indicating excellent discrimination capability. XGBoost and
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LightGBM further confirmed the strength of boosting frameworks. Both models achieved 97.73%
accuracy and 97.96-97.91% F1-scores, with ROC-AUC values above 99.8, ranking them among the
bestperforming classifiers. Their cross-validation metrics (CV_F1 = 97, CV_ROC = 99.6) aligned
closely with test results, demonstrating strong robustness and minimal overfitting.

In summary, while all advanced classifiers except Decision Tree achieved near state-of-the-art results,
SVM and Random Forest emerged as the best-performing models. SVM offered the strongest ROC-
AUC (99.90) and balanced precision-recall trade-off, whereas Random Forest delivered the highest
overall accuracy (97.98%) and stable recall (98.14). Ensemble boosting methods (GB, XGBoost,
LightGBM) also performed on par, confirming the reliability of tree-based ensembles for ASD
prediction tasks.

Table 1. Model Performance Comparison

Model CV_F1 CV_ROC Test Accuracy Test Precision Test Recall Test F1 Test ROC
Logistic Regression 98.16 96.22 96.30 96.74 96.52  97.81

96.73

SVM 97.73 99.86 97.73 98.13 97.97 97.96  99.90

KNN 96.93 99.45 96.73 97.64 96.30 96.96 99.52

Decision Tree 90.84 96.88 91.69 96.91 91.91 92.00 97.98

Random Forest ~ 97.64 99.78 97.98 97.26 98.14 97.92  99.85

Gradient Boosting 97.14 99.73 97.48 97.24 97.68 9746 99.84

XGBoost 97.01 99.69 97.73 98.13 97.91 97.96 99.84

LightGBM 97.09 99.64 97.73 97.69 97.91 9791 99.83

In Figure 3 all three models demonstrated excellent predictive ability, with very few misclassifications.
SVM, Random Forest, and Gradient Boosting each correctly classified the majority of ASD-positive
(210) and ASDnegative (178) cases, with only 4-5 errors in each class. This consistent performance
highlights the robustness of ensemble models and SVM, confirming their suitability for reliable ASD
trait prediction.

SVM — Confusion Matrix RandomForest — Confusion Matrix GradientBoosting — Confusion Matrix

True label
True label

True label

] 1
Predicted label 0 1

Predicted label Predicted label

Figure 3. Confusion matrices of SVM, Random Forest, and Gradient Boosting classifiers on the test
set. The diagonal elements represent correctly classified samples, while off-diagonal values
correspond to misclassifications.
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In Figure 4 three classifiers demonstrate excellent calibration, with predicted probabilities closely
aligned with the true likelihood of ASD traits. The curves for SVM, Random Forest, and Gradient
Boosting almost overlap with the ideal diagonal, confirming that the models not only achieve high
accuracy but also provide reliable probability estimates. This reliability is crucial in healthcare
applications, where calibrated outputs ensure that predicted risks can be trusted in clinical decision-
making.

SVM — Calibration Curve RandomForest — Calibration Curve GradientBoosting — Calibration Curve

Fraction of positives (Positive class: 1)

«++ Perfectly calibrated
0.0 —m— Classifier

----- Perfectly calibrated
& Classifier

----- Perfectly calibrated
0.0 —m— Classifier

Fraction of positives (Positive class: 1)
Fraction of positives (Positive class: 1)

0.0 0.2 0.4 06 0.8 10
0.0 02 04 06 08 10 Mean predicted probability (Positive class: 1) 0.0 02 0.4 0.6 08 1.0
Mean predicted probability (Positive class: 1) Mean predicted probability (Positive class: 1)

Figure 4. Calibration curves for SVM, Random Forest, and Gradient Boosting classifiers on the test
set. The solid blue line represents the observed proportion of positive cases, while the dashed diagonal
line indicates perfect calibration.

— Line Plot of CV_F1 and CV_ROC across Models
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Figure 5. Line plot comparing cross-validation F1-score (CV_F1) and ROC-AUC (CV_ROC) across
different machine learning models. The results show that ensemble-based models such as Random
Forest, Gradient Boosting, XGBoost, and LightGBM consistently achieve higher CV_F1 and
CV_ROC values compared to traditional models like Logistic Regression, KNN, and Decision Tree.

Figure 5 presents a comparative analysis of cross-validation F1 (CV_F1) and ROC-AUC (CV_ROC)
scores across the evaluated machine learning models. The results demonstrate that ensemble-based
methods such as Random Forest, Gradient Boosting, XGBoost, and LightGBM consistently achieve
superior performance, with both CV_F1 and CV_ROC exceeding 97%. Among these, Gradient
Boosting and LightGBM show the most balanced performance, with CV_ROC values close to 99.8%
and F1 scores above 97%, reflecting strong discriminative ability. In contrast, the Decision Tree model
exhibited the lowest CV_F1 score (90.84%), indicating limited generalization compared to other
approaches. Traditional models like Logistic Regression and KNN performed moderately well, but
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they were outperformed by ensemble techniques. Overall, the results confirm that ensemble methods
provide more robust and reliable predictive power for the classification task.

4.2 Model Interpretability with SHAP Analysis

To provide transparency into model decision-making, SHAP (Shapley Additive Explanations)
analysis was conducted. The beeswarm plot (Figure 6) illustrates how individual features influenced
predictions across samples, while the bar plot (Figure 6) summarizes their average contributions. The
results reveal that ethnicity, specific AQ-10 items (A9, A6, AS), and sex were the most influential
predictors of ASD traits, followed by family history of ASD and social/behavioral issues. Clinical
features such as speech delay, learning disorder, and anxiety disorder also contributed meaningfully
but to a lesser extent. These findings align with clinical literature, highlighting both demographic and
behavioral indicators as key determinants of ASD risk, and provide case-level interpretability that
enhances the trustworthiness of the proposed framework.

6. Discussion

The experimental results demonstrated that machine learning models can achieve highly accurate
prediction of ASD traits, with most classifiers exceeding 96% accuracy and ensemble methods
surpassing 97.5%. Among them, SVM and Random Forest emerged as the most effective, with SVM
yielding the highest ROC-AUC (99.90) and Random Forest achieving the highest overall accuracy
(97.98%). These findings are consistent with prior studies that reported the superior performance of
ensemble learners and kernel-based approaches in ASD classification tasks, often reaching accuracies
between 85% and 92%.

An important advancement of this study lies in the integration of interpretability and robustness
analysis. The use of calibration curves confirmed that models produced well-calibrated probabilities,
a critical factor for healthcare applications where risk estimates must be trustworthy for clinical
decision-making. Similarly, bootstrap confidence intervals provided statistical assurance of stability
across test metrics, demonstrating narrow ranges for F1 and ROC-AUC values.

SHAP analysis further enhanced the interpretability of the framework, highlighting key predictors
such as ethnicity, specific AQ-10 items (A9, A6, AS), sex, family history of ASD, and speech delay.
These findings align with existing clinical literature, where speech and language impairments, family
genetic history, and comorbid behavioral issues are recognized as significant ASD risk markers. The
inclusion of these transparent feature-level insights strengthens the clinical relevance of the proposed
framework, offering practitioners both predictive accuracy and explanatory clarity. Taken together,
this study advances prior research by presenting a holistic machine learning pipeline that balances
accuracy, interpretability, and reliability, addressing key challenges in the translation of Al tools into
ASD screening practices.
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Figure 6. SHAP-based interpretability analysis. (a) Beeswarm plot showing the distribution of SHAP
values for the top features, where color indicates feature value (blue = low, red = high). (b) Bar plot
of mean absolute SHAP values, ranking features by their overall contribution to the model output.

6. Limitations

Despite promising results, this study has several limitations. First, the dataset, while comprehensive,
originates from a single curated source, which may limit the generalizability of findings to diverse
populations. Cross-site validation using multi-institutional datasets would be necessary to ensure
external validity. Second, the exclusion of direct diagnostic features (e.g., CARS, Q-Chat-10 scores)
was essential to avoid data leakage, but it may have reduced the predictive richness of the feature
space. Third, fairness analysis was not fully explored; although demographic features were included,
systematic evaluation of subgroup performance (e.g., across sex or ethnicity) was beyond the current
scope. Finally, while SHAP provided interpretability, real-world usability studies with clinicians were
not conducted, leaving open questions regarding the framework’s acceptance in practice.

7. Future Work

Future research will focus on addressing these limitations. Multi-center validation across larger and
more diverse cohorts is necessary to assess the generalizability and fairness of the proposed
framework. Additionally, integration of multi-modal data sources—such as genetic information,
neuroimaging, and speech recordings—could further enhance predictive power and clinical utility.
From a methodological standpoint, advanced fairness-aware algorithms should be investigated to
ensure equitable performance across demographic subgroups. Finally, prospective clinical trials and
user studies with healthcare professionals are needed to evaluate the real-world impact,
interpretability, and acceptance of the proposed framework in routine screening and early intervention
workflows.
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8. CONCLUSION

This study presented a machine learning-based framework for the prediction of autism spectrum
disorder traits that integrates accuracy, interpretability, and robustness. By evaluating eight machine

learning models, we demonstrated that SVM, Random Forest, Gradient Boosting, and XGBoost
achieved state-of-the-art performance, with test accuracies exceeding 97% and ROC-AUC scores
above 99.8%. Beyond predictive performance, model calibration and bootstrap resampling confirmed
the reliability and stability of the results, which is crucial in medical decision-making contexts. SHAP
analysis provided transparent explanations of model outputs, identifying clinically meaningful
predictors such as speech delay, family history of ASD, and behavioral questionnaire items.

The findings suggest that the proposed framework can serve as a valuable tool to support clinicians in
early ASD screening and intervention planning. However, limitations related to dataset diversity,
fairness across subgroups, and lack of prospective validation remain. Future work will expand the
framework to multi-center and multimodal datasets, while also integrating fairness-aware approaches
to ensure equitable predictions across demographic groups. By combining predictive performance
with transparency and robustness, this research moves closer to the development of trustworthy Al
solutions for autism screening and broader healthcare applications.

REFERENCES

[1]  Chen,l. Y., Pierson, E., Joshi, S., Liu, M., Fernandes, M., Ghassemi, M., ... Shah, N. H. (2021).
Ethical machine learning in health care. Annual Review of Biomedical Data Science, 4(1), 123—-144.
https://doi.org/10.1146/annurev-biodatasci-092820-114757

[2] Duda, M., Kosmicki, J. A., Wall, D. P., & colleagues. (2020). Use of machine learning for
behavioral distinction of autism and ADHD. Translational Psychiatry, 10(1), 1-12.
https://doi.org/10.1038/s41398-020-00909-9

[3] Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2020). Autism spectrum
disorder. Nature Reviews Disease Primers, 6(1), 5. https://doi.org/10.1038/s41572-019-0138- 4 [4]
Lundberg, S. M., & Lee, S.-1. (2020). A unified approach to interpreting model predictions.

Nature Machine Intelligence, 2(1), 56—67. https://doi.org/10.1038/s42256-019-0138-9 [5] Reddy, P.,
Reddy, S., & Srinivas, R. (2021). Predicting autism spectrum disorder using machine learning
algorithms: A review. Current Psychiatry Reports, 23(8), 53. https://doi.org/10.1007/s11920-021-
01267-8

[6] Thabtah, F. (2020). Machine learning in autistic spectrum disorder behavioral research: A
review and ways forward. Informatics in Medicine Unlocked, 20, 100372.
https://doi.org/10.1016/j.imu.2020.100372

[7] Bone, D., Bishop, S., Black, M., Goodwin, M., Lord, C., & Narayanan, S. (2021). Machine
learning for classification of autism spectrum disorder based on behavioral markers. Journal of Autism
and Developmental Disorders, 51(3), 996—1009. https://doi.org/10.1007/s10803- 02004512-4

[8] Tariq, Q., Daniels, J., Schwartz, J. N., Washington, P., Kalantarian, H., & Wall, D. P. (2018).
Mobile detection of autism through machine learning on home video: A development and prospective
validation study. PLoS Medicine, 15(11), €1002705. https://doi.org/10.1371/journal.pmed.1002705
[9] Abbas, H., Garberson, F., Glover, E., & Wall, D. P. (2020). Machine learning-based detection
of autism spectrum disorder: Promises and challenges. International Journal of Medical Informatics,
139, 104144. https://doi.org/10.1016/j.ijmedinf.2020.104144

[10] EI Naqa, 1., Li, H., Murphy, M. J., & Naga, C. (2021). Ensemble machine learning in clinical
decision support: Applications in oncology and beyond. Annual Review of Biomedical Engineering,

7242



Frontiers in Health Informatics www. healthinformaticsjournal.com
ISSN-Online: 2676-7104

2024; Vol-13: Issue 8 Open Access

23, 325-349. https://doi.org/10.1146/annurev-bioeng-082120-081813 [11] Li, Y., Wang, Z., & Xu, H.
(2022). Gradient boosting decision trees for autism spectrum disorder prediction using behavioral
datasets. Computers in Biology and Medicine, 146, 105532.
https://doi.org/10.1016/j.compbiomed.2022.105532

[12] Xu, Y., Li, X., Xu, Y., & Wang, J. (2021). Facial image-based autism spectrum disorder
classification using deep convolutional neural networks. Computers in Human Behavior, 122, 106850.
https://doi.org/10.1016/j.chb.2021.106850

[13] Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., & Meneguzzi, F. (2020).
Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neurolmage:
Clinical, 17, 16-23. https://doi.org/10.1016/j.nicl.2020.102423 [14]

Lundberg, S. M., Erion, G., & Lee, S.-I. (2020). From local explanations to global understanding with
explainable Al for trees. Nature Machine Intelligence, 2(1), 252-259. https://doi.org/10.1038/s42256-
020-0213-7

[15] Lundervold, A. S., & Lundervold, A. (2021). Explainable artificial intelligence in psychiatry:
A systematic review of current approaches and future directions. Frontiers in Psychiatry, 12, 661356.
https://doi.org/10.3389/fpsyt.2021.661356

[16] Karim, M. R., et al. (2023). Explainable machine learning for autism spectrum disorder
screening: A SHAP-based feature analysis. Artificial Intelligence in Medicine, 136, 102470.
https://doi.org/10.1016/j.artmed.2023.102470

[17] Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural

networks. Proceedings of the 34th International Conference on Machine Learning (ICML), 1321-
1330.

[18] Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2019). Ensuring fairness
in machine learning to advance health equity. Annals of Internal Medicine, 169(12), 866— 872.
https://doi.org/10.7326/M18-1990

[19] Efron, B., & Hastie, T. (2021). Computer age statistical inference: Bootstrap methods for

uncertainty quantification in predictive modeling. Journal of the American Statistical Association,
116(536), 1601-1615.

7243



