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ABSTRACT 
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition that requires early 
detection for timely intervention. In this study, a comprehensive machine learning framework was 
developed and evaluated for predicting ASD traits using a behavioral and demographic dataset 
comprising 1,985 records and 28 features. Eight models, including Logistic Regression, Support 
Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient 
Boosting, XGBoost, and LightGBM, were systematically assessed. 
Experimental results demonstrated that advanced classifiers achieved superior predictive performance, 
with SVM attaining the highest ROC-AUC (99.90) and Random Forest yielding the highest test 
accuracy (97.98%). Robust analysis using calibration curves confirmed that probability estimates were 
well-aligned with true outcomes, while bootstrap confidence intervals validated the stability of the 
reported metrics. Furthermore, interpretability was incorporated through SHAP analysis, which 
identified speech delay, family history of ASD, anxiety disorder, and specific AQ-10 items as key 
predictive features. These findings highlight the potential of explainable and reliable computational 
models for supporting ASD screening in clinical and community settings. The proposed framework 
balances predictive accuracy with interpretability and reliability, addressing key barriers to the 
adoption of data-driven approaches in healthcare decision support. 
Keywords: Autism Spectrum Disorder (ASD), Machine Learning, Explainable Artificial Intelligence 
(XAI), Model Calibration, Predictive Modeling. 
  
1. INTRODUCTION 
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by 
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persistent deficits in social communication, restricted interests, and repetitive behaviors. The global 
prevalence of ASD has increased substantially in recent decades, with current estimates suggesting 
that approximately one in 100 children are affected worldwide [1]. Early and accurate identification 
of ASD is of paramount importance, as timely intervention has been shown to improve long-term 
developmental, social, and educational outcomes. However, traditional diagnostic practices remain 
resource-intensive, relying on expert-administered behavioral assessments that are time-consuming, 
costly, and often inaccessible in under-resourced regions [2]. These limitations underscore the urgent 
need for scalable, data-driven screening approaches that can complement conventional diagnostic 
processes. 
Data-driven computational methods have shown strong potential in the context of mental health and 
developmental disorders. By leveraging demographic, behavioral, and clinical questionnaire data, 
these approaches can identify complex patterns associated with ASD and enable rapid risk 
stratification [3]. Previous studies have demonstrated promising predictive performance using 
classical algorithms such as support vector machines (SVM), random forests, and gradient boosting, 
as well as more advanced deep learning architectures [4]. While these methods have achieved high 
levels of accuracy, challenges remain concerning robustness, interpretability, and generalizability 
across diverse populations. 
Recent developments in explainable modeling provide a pathway to bridge the gap between predictive 
performance and clinical adoption. For example, techniques such as SHAP (Shapley Additive 
Explanations) allow clinicians and researchers to understand how individual features contribute to 
model predictions, thereby fostering trust and transparency in computational decision support [5]. At 
the same time, rigorous evaluation frameworks—such as calibration analysis, bootstrap confidence 
intervals, and cost-sensitive learning—have been introduced to ensure that models are not only 
accurate but also reliable and ethically aligned with healthcare priorities [6]. Despite these advances, 
few ASD-focused studies have systematically combined predictive modeling with interpretability and 
robustness assessments, leaving a gap in clinically meaningful research. 
In this study, we present a computational framework for ASD screening that emphasizes predictive 
performance, interpretability, and robustness. Using demographic and behavioral features while 
excluding direct diagnostic scales to avoid data leakage, we systematically evaluate multiple 
classifiers, including support vector machines, random forests, and boosting methods. Our approach 
incorporates cross-validation for performance stability, calibration curves for probability reliability, 
bootstrap confidence intervals for statistical rigor, and SHAP-based interpretability for transparent 
decision support. By addressing both methodological rigor and clinical interpretability, this work 
contributes to the development of scalable and trustworthy tools for early ASD detection, with 
potential applications in healthcare and educational settings. 
 
2. RELATED WORK 
Research on autism spectrum disorder (ASD) has increasingly explored behavioral, demographic, and 
clinical questionnaire data to support early detection. Several studies have focused on the use of 
screening tools such as the Autism Spectrum Quotient (AQ) and the Childhood Autism Rating Scale 
(CARS) for developing predictive approaches. For example, Bone et al. demonstrated that 
computational methods could enhance the efficiency of autism screening by identifying key behavioral 
markers from standardized assessments, achieving classification accuracies of up to 85% [7]. 
Similarly, Tariq et al. introduced mobile-based applications designed to provide accessible and 
scalable autism risk assessment in community settings, reporting a sensitivity of 90% on short home 
video samples [8]. 
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Classical ML algorithms have frequently been employed in ASD prediction tasks. For instance, Abbas 
et al. applied decision trees and support vector machines on behavioral datasets, reporting accuracies 
in the range of 80–86% [9]. El Naqa et al. highlighted the potential of ensemble methods such as 
random forests and gradient boosting in clinical decision support systems, emphasizing their 
robustness against noisy healthcare data [10]. More recently, predictive frameworks using XGBoost 
and LightGBM have shown enhanced performance on health-related tabular datasets, with ASD-
focused studies reporting accuracy values approaching 90% [11]. The rise of deep learning has further 
expanded ASD research. Xu et al. developed convolutional neural networks to classify ASD from 
facial images, achieving an accuracy of 92% [12], while Heinsfeld et al. utilized functional MRI data 
with autoencoders for neuroimaging-based ASD classification, reaching balanced accuracies of 
approximately 70–75% on the ABIDE dataset [13]. These studies highlight the flexibility of ML across 
diverse modalities, though behavioral and questionnaire-based data remain attractive due to their lower 
acquisition cost and strong predictive signal. 
Interpretability remains a critical barrier to clinical adoption of ML in ASD. Several studies have 
adopted explainable AI (XAI) frameworks to enhance transparency. Lundberg, Erion, and Lee 
expanded SHAP applications to healthcare, demonstrating their ability to attribute patient-level risk 
factors with consistency, though quantitative improvements in performance were not reported [14]. 
Lundervold and Lundervold reviewed interpretable ML in psychiatry and emphasized that models 
balancing predictive accuracy (70–90%) with transparency are more likely to gain clinician trust [15]. 
More recently, Karim et al. applied SHAP to ASD screening models, showing that key features such 
as speech delay and anxiety consistently drove predictions in models with test accuracies above 88% 
[16]. 
Robustness and fairness are also critical in deploying ASD ML frameworks. Calibration studies in 
medical AI have shown that many high-performing classifiers, despite reporting accuracies exceeding 
90%, remain poorly calibrated and thus risk misrepresenting clinical probability estimates [17]. In 
addition, fairness-aware models have been advocated to prevent demographic bias in 
neurodevelopmental predictions, particularly where subgroup accuracies diverge significantly [18]. 
Bootstrap confidence intervals and resampling-based methods have been proposed to quantify 
uncertainty in reported accuracies and F1 scores, ensuring reproducibility and reliability in healthcare 
ML [19]. 
Collectively, these studies demonstrate substantial progress in applying ML to ASD detection, with 
reported accuracies generally ranging from 75% to 92% depending on the dataset and feature modality. 
However, few works have simultaneously integrated high-performance predictive models with 
interpretability (e.g., SHAP), robustness (e.g., calibration and CIs), and fairness considerations in ASD 
screening contexts. This gap motivates the present work, which aims to design a holistic ML 
framework for ASD detection that balances predictive accuracy with clinical transparency and 
reliability. 
 
3. PROPOSED METHODOLOGY 
The overall methodology for ASD traits prediction is illustrated in Figure 1. The process begins with 
data loading and preprocessing, where raw data are cleaned by handling missing values, removing 
irrelevant identifiers, and standardizing formats. Next, feature engineering and encoding are applied 
to transform categorical attributes into numerical form and ensure compatibility with machine learning 
algorithms. The dataset was divided into training and testing subsets, followed by normalization to 
stabilize the learning process. During the model development stage, multiple classifiers were trained 
and optimized using cross-validation to ensure robustness and reduce overfitting. Model interpretation 
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and validation were subsequently conducted through SHAP-based explainability to highlight key 
feature contributions, while calibration curves were employed to assess the reliability of probability 
estimates, thereby ensuring both transparency and clinical trustworthiness. 

 
Figure 1. Proposed ASD traits prediction pipeline. The framework consists of sequential stages: data 
preprocessing, feature engineering and encoding, data splitting and scaling, model training with cross-
validation, and final interpretation and validation using SHAP explainability and calibration analysis. 
 
3.1 Dataset Description 
The dataset employed in this study comprises 1,985 records and 28 features, with the final column 
representing the binary target variable (ASD_traits), denoting whether a child is likely to exhibit ASD 
traits in the future (0 = No, 1 = Yes). It encompasses a diverse range of variables, including 
standardized screening measures such as the Autism Spectrum Quotient (AQ-10), Social 
Responsiveness Scale (SRS), Q-Chat-10 Score, and Childhood Autism Rating Scale (CARS). In 
addition, demographic attributes (age, sex, ethnicity), family history of ASD, and clinical indicators 
such as speech delay, learning disorders, genetic disorders, depression, developmental delay, anxiety, 
and jaundice are incorporated, ensuring a comprehensive representation of behavioral, familial, and 
medical factors. The dataset was curated by the Autism Research Group at the University of Arkansas 
(Computer Science Department) to support predictive modeling and research into early detection of 
autism, making it a comprehensive resource for investigating behavioral, clinical, and genetic risk 
factors associated with ASD. The results in Figure 2 indicate a strong association between speech 
delay/language disorder and the presence of ASD traits. Children with speech delay (coded as 1) 
exhibit a noticeably higher proportion of ASDpositive cases compared to those without speech delay. 
This highlights speech and language impairment as an important predictive feature in ASD screening. 
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Figure 2. Distribution of ASD traits by speech delay/language disorder. The stacked bar chart shows 
the proportion of individuals with and without ASD traits (0 = No, 1 = Yes) across groups with speech 
delay/language disorder (1 = Yes) and without (0 = No). 
 
3.2 Data Preprocessing 
The dataset was cleaned and transformed before model development. Unnecessary identifiers (e.g., 
patient ID) were removed, and missing values were imputed — median for numerical features and 
mode for categorical features. Binary categorical variables (Yes/No) were mapped to {1,0}, while 
multi-class categorical variables were label-encoded. Diagnostic features such as the Childhood 
Autism Rating Scale and Qchat-10 Score were excluded to avoid data leakage. The dataset was then 
split into 80% training and 20% testing sets using stratified sampling to preserve class balance. 
Numerical features were standardized using z-score normalization:  x' = (x 
- μ) / σ 
3.3 Model Training and Cross-Validation 
Eight machine learning algorithms were evaluated to classify autism spectrum disorder (ASD) traits. 
Each model was trained on the reduced feature set and carefully tuned with regularization to minimize 
overfitting. A 5-fold cross-validation (CV) scheme was applied on the training set to ensure 
generalization, and the final test results were reported on the held-out test set. The CV score is defined 
as: 
CV_Score = (1/k) Σ Mi, where Mi is the metric (F1 or ROC-AUC) from fold i, and k = 5. 
Logistic Regression (LR) 
Logistic Regression is a linear classification algorithm that models the probability of the target class 
using the logistic (sigmoid) function. It assumes a linear relationship between the features and the log-
odds of the outcome: 
P(y=1|x) = 1 / (1 + e^(-(w · x + b))) 
where w is the weight vector and b is the bias term. Despite its simplicity, LR provides strong baselines 
in many medical applications. 
Support Vector Machine (SVM) 
Support Vector Machine constructs a decision boundary that maximizes the margin between classes. 
For binary classification, the decision function is: 
f(x) = sign(w · x + b) 
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SVM can also leverage kernel functions to handle non-linear separability, such as the Radial Basis 
Function (RBF) kernel. 
k-Nearest Neighbors (KNN) 
KNN is a non-parametric algorithm that predicts class labels based on the majority vote of the k nearest 
neighbors in the feature space: 
ŷ = mode{ yi : xi   Nk(x) } 
KNN is simple and interpretable but sensitive to the choice of k and feature scaling. 
Decision Tree (DT) 
Decision Trees partition the feature space recursively using criteria such as Information Gain or Gini 
Impurity. The model assigns class labels based on leaf nodes reached during traversal. While 
interpretable, standalone trees tend to overfit, motivating the use of ensemble methods. 
Random Forest (RF) 
Random Forest is an ensemble method that combines multiple decision trees trained on bootstrapped 
subsets of the data. Each tree contributes to the final prediction through majority voting: 
ŷ = mode{ h1(x), h2(x), …, hT(x) } 
where hi(x) represents the prediction from the i-th tree. RF is robust to noise and reduces variance 
compared to a single decision tree. 
Gradient Boosting (GB) 
Gradient Boosting builds trees sequentially, where each new tree attempts to correct the errors of its 
predecessor. At step m, the boosted model is updated as: 
Fm(x) = Fm-1(x) + γm hm(x) 
where hm(x) is the weak learner and γm is the learning rate. GB is highly effective but can be prone 
to overfitting without regularization. 
Extreme Gradient Boosting (XGBoost) 
XGBoost is a scalable and regularized variant of Gradient Boosting. It optimizes an objective function 
defined as: 
Obj = Σ l(yi, ŷi) + Σ Ω(fk) 
where l is the loss function (e.g., logistic loss), and Ω(fk) is the regularization term to control model 
complexity. XGBoost introduces system optimizations and shrinkage, making it efficient for large 
datasets. 
Light Gradient Boosting Machine (LightGBM) 
LightGBM is a gradient boosting framework optimized for speed and memory efficiency. It uses 
histogrambased splitting and leaf-wise tree growth strategies to improve accuracy while reducing 
training time. LightGBM is particularly suited for high-dimensional and large-scale datasets. 
 
3.4 Performance Metrics 
To comprehensively evaluate the performance of the machine learning classifiers, multiple metrics 
were considered. These metrics ensure that the models are not only accurate overall but also effective 
in identifying ASD-positive cases and reliable in their predictions. The selected evaluation criteria 
include Accuracy, Precision, Recall, F1-Score, and the Area Under the Receiver Operating 
Characteristic Curve (ROC-AUC). Each metric is mathematically defined as follows: Accuracy 
Accuracy measures the proportion of correctly classified instances among the total number of 
instances: Accuracy = (TP + TN) / (TP + TN + FP + FN) where TP = True Positives, TN = True 
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Negatives, FP = False Positives, and FN = False Negatives. 
Precision 
Precision quantifies the proportion of correctly predicted positive cases out of all predicted positives: 
Precision = TP / (TP + FP) 
High precision indicates a low false-positive rate, which is crucial for clinical decision-making. Recall 
(Sensitivity) 
Recall, or Sensitivity, measures the proportion of actual positives that were correctly identified: Recall 
= TP / (TP + FN) 
High recall ensures that most ASD-positive cases are detected, minimizing false negatives. 
F1-Score 
The F1-Score is the harmonic mean of Precision and Recall, providing a balanced metric when there 
is an uneven class distribution: 
F1 = 2 × (Precision × Recall) / (Precision + Recall) 
This score is particularly useful in healthcare datasets where both false positives and false negatives 
have critical implications. 
ROC-AUC 
The Area Under the Receiver Operating Characteristic Curve (ROC-AUC) evaluates the model’s 
ability to distinguish between positive and negative classes across varying thresholds. It is defined in 
terms of True Positive Rate (TPR) and False Positive Rate (FPR): 
TPR = TP / (TP + FN) FPR = FP / (FP + TN) 
A higher ROC-AUC indicates better discriminative ability, with a value of 1.0 representing perfect 
classification. 
4. EXPERIMENTAL RESULTS 
Table 1 presents the comparative performance of eight machine learning models evaluated on the ASD 
traits dataset. The results demonstrate that nearly all models achieved high predictive performance, 
with test accuracies exceeding 96%, except for the Decision Tree baseline. 
Logistic Regression provided a strong baseline, achieving 96.22% accuracy, 96.30% precision, 
96.74% recall, and 96.52% F1-score. Its ROC-AUC score of 97.81 further confirmed reliable 
discriminative ability, highlighting the dataset’s suitability for even linear models. 
Support Vector Machine (SVM) outperformed most classifiers, achieving 97.73% accuracy and 
97.96% F1score, alongside the highest ROC-AUC of 99.90. These results indicate that SVM offered 
the best balance between precision (98.13) and recall (97.97), making it highly effective for 
distinguishing ASD-positive cases without sacrificing sensitivity. 
KNN achieved comparable results to Logistic Regression, with 96.73% accuracy and 96.96% F1-
score, but slightly lagged in recall (96.30). Its ROC-AUC of 99.52 suggested strong ranking ability, 
although its overall generalization was slightly weaker than ensemble models. 
Decision Tree, while interpretable, showed the weakest performance across all models, with only 
91.69% accuracy and 92.00% F1-score. Its relatively low cross-validation scores (CV_F1 = 90.84, 
CV_ROC = 96.88) highlighted overfitting tendencies and poor generalization, reinforcing the need for 
ensemble-based approaches. Ensemble methods provided superior stability and accuracy. Random 
Forest achieved the highest test accuracy of 97.98% and an F1-score of 97.92, supported by strong 
recall (98.14). Gradient Boosting also performed well with 97.48% accuracy and 97.46% F1, 
demonstrating competitive balance between sensitivity and precision. Both methods consistently 
yielded ROC-AUC scores above 99.8, indicating excellent discrimination capability. XGBoost and 
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LightGBM further confirmed the strength of boosting frameworks. Both models achieved 97.73% 
accuracy and 97.96–97.91% F1-scores, with ROC-AUC values above 99.8, ranking them among the 
bestperforming classifiers. Their cross-validation metrics (CV_F1 ≈ 97, CV_ROC ≈ 99.6) aligned 
closely with test results, demonstrating strong robustness and minimal overfitting. 
In summary, while all advanced classifiers except Decision Tree achieved near state-of-the-art results, 
SVM and Random Forest emerged as the best-performing models. SVM offered the strongest ROC-
AUC (99.90) and balanced precision-recall trade-off, whereas Random Forest delivered the highest 
overall accuracy (97.98%) and stable recall (98.14). Ensemble boosting methods (GB, XGBoost, 
LightGBM) also performed on par, confirming the reliability of tree-based ensembles for ASD 
prediction tasks. 
 
Table 1. Model Performance Comparison 

Model CV_F1 CV_ROC Test Accuracy Test Precision Test Recall Test F1 Test ROC 

Logistic Regression 
96.73 

98.16 96.22 96.30 96.74 96.52 97.81 

SVM 97.73 99.86 97.73 98.13 97.97 97.96 99.90 

KNN 96.93 99.45 96.73 97.64 96.30 96.96 99.52 

Decision Tree 90.84 96.88 91.69 96.91 91.91 92.00 97.98 

Random Forest 97.64 99.78 97.98 97.26 98.14 97.92 99.85 

Gradient Boosting 97.14 99.73 97.48 97.24 97.68 97.46 99.84 

XGBoost 97.01 99.69 97.73 98.13 97.91 97.96 99.84 

LightGBM 97.09 99.64 97.73 97.69 97.91 97.91 99.83 
 
In Figure 3 all three models demonstrated excellent predictive ability, with very few misclassifications. 
SVM, Random Forest, and Gradient Boosting each correctly classified the majority of ASD-positive 
(210) and ASDnegative (178) cases, with only 4–5 errors in each class. This consistent performance 
highlights the robustness of ensemble models and SVM, confirming their suitability for reliable ASD 
trait prediction. 
 

Figure 3. Confusion matrices of SVM, Random Forest, and Gradient Boosting classifiers on the test 
set. The diagonal elements represent correctly classified samples, while off-diagonal values 
correspond to misclassifications. 
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In Figure 4 three classifiers demonstrate excellent calibration, with predicted probabilities closely 
aligned with the true likelihood of ASD traits. The curves for SVM, Random Forest, and Gradient 
Boosting almost overlap with the ideal diagonal, confirming that the models not only achieve high 
accuracy but also provide reliable probability estimates. This reliability is crucial in healthcare 
applications, where calibrated outputs ensure that predicted risks can be trusted in clinical decision-
making.

 
Figure 4. Calibration curves for SVM, Random Forest, and Gradient Boosting classifiers on the test 
set. The solid blue line represents the observed proportion of positive cases, while the dashed diagonal 
line indicates perfect calibration. 
 

Figure 5. Line plot comparing cross-validation F1-score (CV_F1) and ROC-AUC (CV_ROC) across 
different machine learning models. The results show that ensemble-based models such as Random 
Forest, Gradient Boosting, XGBoost, and LightGBM consistently achieve higher CV_F1 and 
CV_ROC values compared to traditional models like Logistic Regression, KNN, and Decision Tree. 
 
Figure 5 presents a comparative analysis of cross-validation F1 (CV_F1) and ROC-AUC (CV_ROC) 
scores across the evaluated machine learning models. The results demonstrate that ensemble-based 
methods such as Random Forest, Gradient Boosting, XGBoost, and LightGBM consistently achieve 
superior performance, with both CV_F1 and CV_ROC exceeding 97%. Among these, Gradient 
Boosting and LightGBM show the most balanced performance, with CV_ROC values close to 99.8% 
and F1 scores above 97%, reflecting strong discriminative ability. In contrast, the Decision Tree model 
exhibited the lowest CV_F1 score (90.84%), indicating limited generalization compared to other 
approaches. Traditional models like Logistic Regression and KNN performed moderately well, but 
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they were outperformed by ensemble techniques. Overall, the results confirm that ensemble methods 
provide more robust and reliable predictive power for the classification task. 
 
4.2 Model Interpretability with SHAP Analysis 
To provide transparency into model decision-making, SHAP (Shapley Additive Explanations) 
analysis was conducted. The beeswarm plot (Figure 6) illustrates how individual features influenced 
predictions across samples, while the bar plot (Figure 6) summarizes their average contributions. The 
results reveal that ethnicity, specific AQ-10 items (A9, A6, A5), and sex were the most influential 
predictors of ASD traits, followed by family history of ASD and social/behavioral issues. Clinical 
features such as speech delay, learning disorder, and anxiety disorder also contributed meaningfully 
but to a lesser extent. These findings align with clinical literature, highlighting both demographic and 
behavioral indicators as key determinants of ASD risk, and provide case-level interpretability that 
enhances the trustworthiness of the proposed framework. 
 
6. Discussion 
The experimental results demonstrated that machine learning models can achieve highly accurate 
prediction of ASD traits, with most classifiers exceeding 96% accuracy and ensemble methods 
surpassing 97.5%. Among them, SVM and Random Forest emerged as the most effective, with SVM 
yielding the highest ROC-AUC (99.90) and Random Forest achieving the highest overall accuracy 
(97.98%). These findings are consistent with prior studies that reported the superior performance of 
ensemble learners and kernel-based approaches in ASD classification tasks, often reaching accuracies 
between 85% and 92%. 
An important advancement of this study lies in the integration of interpretability and robustness 
analysis. The use of calibration curves confirmed that models produced well-calibrated probabilities, 
a critical factor for healthcare applications where risk estimates must be trustworthy for clinical 
decision-making. Similarly, bootstrap confidence intervals provided statistical assurance of stability 
across test metrics, demonstrating narrow ranges for F1 and ROC-AUC values. 
SHAP analysis further enhanced the interpretability of the framework, highlighting key predictors 
such as ethnicity, specific AQ-10 items (A9, A6, A5), sex, family history of ASD, and speech delay. 
These findings align with existing clinical literature, where speech and language impairments, family 
genetic history, and comorbid behavioral issues are recognized as significant ASD risk markers. The 
inclusion of these transparent feature-level insights strengthens the clinical relevance of the proposed 
framework, offering practitioners both predictive accuracy and explanatory clarity. Taken together, 
this study advances prior research by presenting a holistic machine learning pipeline that balances 
accuracy, interpretability, and reliability, addressing key challenges in the translation of AI tools into 
ASD screening practices. 
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Figure 6. SHAP-based interpretability analysis. (a) Beeswarm plot showing the distribution of SHAP 
values for the top features, where color indicates feature value (blue = low, red = high). (b) Bar plot 
of mean absolute SHAP values, ranking features by their overall contribution to the model output. 
 
6. Limitations 
Despite promising results, this study has several limitations. First, the dataset, while comprehensive, 
originates from a single curated source, which may limit the generalizability of findings to diverse 
populations. Cross-site validation using multi-institutional datasets would be necessary to ensure 
external validity. Second, the exclusion of direct diagnostic features (e.g., CARS, Q-Chat-10 scores) 
was essential to avoid data leakage, but it may have reduced the predictive richness of the feature 
space. Third, fairness analysis was not fully explored; although demographic features were included, 
systematic evaluation of subgroup performance (e.g., across sex or ethnicity) was beyond the current 
scope. Finally, while SHAP provided interpretability, real-world usability studies with clinicians were 
not conducted, leaving open questions regarding the framework’s acceptance in practice. 
 
7. Future Work 
Future research will focus on addressing these limitations. Multi-center validation across larger and 
more diverse cohorts is necessary to assess the generalizability and fairness of the proposed 
framework. Additionally, integration of multi-modal data sources—such as genetic information, 
neuroimaging, and speech recordings—could further enhance predictive power and clinical utility. 
From a methodological standpoint, advanced fairness-aware algorithms should be investigated to 
ensure equitable performance across demographic subgroups. Finally, prospective clinical trials and 
user studies with healthcare professionals are needed to evaluate the real-world impact, 
interpretability, and acceptance of the proposed framework in routine screening and early intervention 
workflows. 
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8. CONCLUSION 
This study presented a machine learning–based framework for the prediction of autism spectrum 
disorder traits that integrates accuracy, interpretability, and robustness. By evaluating eight machine 
learning models, we demonstrated that SVM, Random Forest, Gradient Boosting, and XGBoost 
achieved state-of-the-art performance, with test accuracies exceeding 97% and ROC-AUC scores 
above 99.8%. Beyond predictive performance, model calibration and bootstrap resampling confirmed 
the reliability and stability of the results, which is crucial in medical decision-making contexts. SHAP 
analysis provided transparent explanations of model outputs, identifying clinically meaningful 
predictors such as speech delay, family history of ASD, and behavioral questionnaire items. 
The findings suggest that the proposed framework can serve as a valuable tool to support clinicians in 
early ASD screening and intervention planning. However, limitations related to dataset diversity, 
fairness across subgroups, and lack of prospective validation remain. Future work will expand the 
framework to multi-center and multimodal datasets, while also integrating fairness-aware approaches 
to ensure equitable predictions across demographic groups. By combining predictive performance 
with transparency and robustness, this research moves closer to the development of trustworthy AI 
solutions for autism screening and broader healthcare applications. 
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