2025; Vol 14: Issue 1

Open Access

"Zinner Syndrome: A Comprehensive Review of Pathophysiology, Diagnosis, and Management"

Dr. Prithvansh Malhotra^{1*}, Dr. R. K. Shinde², Dr. Muskaan Singhal³, Dr. Rajan Soni⁴ Affiliations

Junior Resident , General Surgery , JNMC , Sawagi , Meghe , Wardha Email: drprithvanshmalhotra@gmail.com | Phone: +91-6283058575
 HOD & Professor , General Surgery , JNMC, Sawangi , Meghe , Wardha
 Junior Resident , Obstetrics & Gynaecology , NIMS , Jaipur Email: singhalmuss.3011@gmail.com | Phone: +91-7217743943

⁴ MS (General Surgery), Director and Consultant, Soni Hospitals, Rajpura, Punjab, India

Corresponding Author

*Dr. Prithvansh Malhotra Email: drprithvanshmalhotra@gmail.com

Cite this paper as: Dr. Prithvansh Malhotra*, Dr. R. K. Shinde, Dr. Muskaan Singhal, Dr. Rajan Soni (2025) "Zinner Syndrome: A Comprehensive Review of Pathophysiology, Diagnosis, and Management". *Frontiers in Health Informatics*, 14 (1), 2198-2211

Abstract

Zinner Syndrome is a rare congenital disorder characterized by the combination of ipsilateral renal agenesis, seminal vesicle cysts, and sometimes prostate abnormalities. It primarily affects males due to malformations of the male reproductive system. The pathophysiology of Zinner Syndrome is rooted in the abnormal development of the Wolffian duct during embryogenesis, leading to defective formation of essential structures such as the kidneys and seminal vesicles. Most commonly, Zinner Syndrome presents with infertility, as the seminal vesicle cysts obstruct the ejaculatory ducts, preventing sperm flow. Additionally, affected individuals may experience renal dysfunction, although this is less common and often compensated for by the remaining kidney. Diagnosis typically occurs during infertility evaluations, with imaging techniques such as ultrasound and MRI playing a critical role in identifying the characteristic renal and reproductive anomalies. Treatment strategies involve surgical interventions to remove or drain the seminal vesicle cysts, and for many, assisted reproductive technologies (ART) like sperm retrieval and in vitro fertilization (IVF) may be required to achieve biological fatherhood. While the prognosis for renal function is generally favorable with appropriate monitoring, infertility remains a major challenge, and the success of fertility treatments varies. The condition's rarity and variability in presentation make it difficult to diagnose early, necessitating a multidisciplinary approach for optimal care. Future research should focus on understanding the genetic basis, improving diagnostic methods, and exploring new therapeutic options for fertility restoration and renal preservation. Multicenter studies and patient registries will be essential in gathering data for better clinical management and long-term outcome prediction.

Keywords: Zinner Syndrome, Male Infertility, Seminal Vesicle Cysts, Renal Agenesis, Assisted Reproductive Technologies

Introduction

Zinner Syndrome is a rare congenital disorder that involves the maldevelopment of both the renal and reproductive

2025; Vol 14: Issue 1 Open Access

systems. This syndrome is characterized by ipsilateral renal agenesis, seminal vesicle cysts, and sometimes, prostate abnormalities. Zinner Syndrome predominantly affects males and is associated with abnormal development of the mesonephric (Wolffian) duct during embryogenesis, leading to impaired renal and reproductive organ formation [1]. The syndrome's rarity and varied clinical presentation often lead to diagnostic challenges, making timely recognition and management crucial for affected individuals [2]. Zinner Syndrome was first described in the early 20th century and has since been the subject of case reports and small case series. Although recognized clinically, it remains underreported due to its rarity. Early recognition of Zinner Syndrome was based primarily on clinical observations and anatomical findings from imaging studies. Over the decades, advances in diagnostic imaging, particularly ultrasound and MRI, have improved the detection and understanding of the syndrome [3]. However, its rarity and the nonspecific nature of symptoms often result in delayed diagnosis or misdiagnosis [4].

Zinner Syndrome holds clinical relevance primarily due to its impact on male fertility and renal health. The syndrome often manifests through unexplained infertility, leading many affected individuals to seek medical help. Furthermore, renal agenesis can result in kidney dysfunction later in life, contributing to chronic kidney disease in some individuals [5]. The syndrome's complexity stems from the involvement of both renal and reproductive systems, requiring a multifaceted approach to diagnosis and management. Therefore, understanding Zinner Syndrome is critical for both nephrologists and fertility specialists [6]. Zinner Syndrome is extremely rare, with only a limited number of cases reported in medical literature. As a result, its true prevalence remains difficult to ascertain. While some sources estimate the incidence to be around 1 in 10,000 to 1 in 50,000 births, the actual number may be higher, given that some cases remain undiagnosed until adulthood [7]. The rarity of the syndrome poses significant challenges for physicians in terms of both diagnosis and treatment. Furthermore, it complicates the establishment of universal treatment protocols and standards of care [8].

The primary anatomical features of Zinner Syndrome include unilateral renal agenesis and seminal vesicle cysts. These abnormalities arise due to developmental disruptions in the Wolffian duct during embryogenesis. The Wolffian duct normally contributes to the formation of the kidneys, seminal vesicles, prostate, and vas deferens in males. A failure in this process results in the characteristic malformations seen in Zinner Syndrome [9]. The pathogenesis remains unclear, though genetic and environmental factors may contribute to these developmental anomalies [10]. Zinner Syndrome's embryological basis is rooted in the abnormal development of the mesonephric (Wolffian) duct during the first trimester of pregnancy. Incomplete or aberrant development of this duct leads to agenesis or dysgenesis of the kidney and seminal vesicles. The absence of these structures disrupts the normal functioning of the renal and reproductive systems. Studies have shown that abnormalities in signaling pathways crucial for mesonephric duct differentiation contribute to the pathogenesis of the syndrome [11]. Understanding the embryological origins of Zinner Syndrome is key to developing effective diagnostic and therapeutic strategies.

Zinner Syndrome is typically considered sporadic, with most cases occurring without a clear family history. However, there have been reports of familial occurrences, suggesting a possible genetic predisposition. Genetic investigations have yet to identify a specific mutation or chromosomal abnormality consistently associated with the syndrome. This absence of a definitive genetic marker complicates genetic counseling and prenatal diagnosis for affected families [12]. More research is needed to uncover any potential hereditary patterns or genetic factors that could predispose individuals to the condition [13]. Patients with Zinner Syndrome typically present with male infertility, which is often the first indication of the condition. Seminal vesicle cysts obstruct the ejaculatory ducts,

2025; Vol 14: Issue 1

Open Access

leading to azoospermia or oligospermia, a primary cause of infertility. Some patients may also experience chronic abdominal pain, urinary tract infections, or flank pain due to renal abnormalities [14]. Many cases, however, are asymptomatic until later in life, often going undiagnosed until infertility is investigated. Renal issues related to the syndrome, such as hypertension or chronic kidney disease, may not become apparent until later in life [15]. The aim of this paper is to provide a comprehensive review of Zinner Syndrome, with a focus on its pathophysiology, clinical features, diagnostic approaches, and management strategies. This paper seeks to consolidate the current knowledge regarding this rare condition, emphasize the importance of early diagnosis, and explore available treatment options. Additionally, it aims to highlight areas in need of further research to improve clinical outcomes and establish standardized care protocols for individuals affected by Zinner Syndrome.

Epidemiology of Zinner Syndrome

Zinner Syndrome is an extremely rare condition, with an estimated prevalence of approximately 1 in 10,000 to 1 in 50,000 individuals. However, the exact prevalence is difficult to determine due to the rarity of the syndrome and its underreporting in clinical practice. Many cases may go undiagnosed or misdiagnosed, contributing to the lack of comprehensive epidemiological data. Some studies suggest that Zinner Syndrome is more commonly diagnosed in males due to its male-specific reproductive tract anomalies, such as seminal vesicle cysts and prostate involvement [16]. The global distribution of Zinner Syndrome appears to be relatively uniform, with cases reported in various regions across the world. However, due to its rarity, large-scale epidemiological studies are sparse, and data on regional variations are limited. Most of the documented cases come from developed countries, likely due to the higher rate of access to advanced diagnostic tools, such as ultrasound and MRI, which facilitate the identification of this condition. In less developed regions, the lack of specialized diagnostic equipment may lead to delayed diagnoses or misdiagnosis of the condition [17].

Zinner Syndrome is typically diagnosed in early adulthood, with most cases being identified between the ages of 20 and 40. However, some individuals remain asymptomatic until later stages of life, and the syndrome may be diagnosed in men presenting with infertility or recurrent urinary tract infections. Early diagnosis is crucial for preventing long-term complications, such as kidney dysfunction and progressive infertility, as well as for providing appropriate fertility treatment options. The age of diagnosis can be influenced by the severity of symptoms and the effectiveness of diagnostic imaging [18]. Zinner Syndrome predominantly affects males, as the syndrome involves malformations of male reproductive structures, including the seminal vesicles and prostate, which develop from the Wolffian duct during embryogenesis. The involvement of the male reproductive system makes it unlikely for females to experience the same reproductive tract anomalies. Although rare familial cases have been reported in which female relatives carry the genetic predisposition, females are typically not affected by the condition. Therefore, the epidemiology of Zinner Syndrome is heavily skewed toward male patients, and the condition is most commonly studied and treated by urologists specializing in male infertility [19].

While Zinner Syndrome is generally considered a sporadic condition, there have been reports of familial occurrences, suggesting that genetic factors may play a role in its development. Some families with multiple affected males have been documented, suggesting that an inherited predisposition may be present in a small proportion of cases. However, the genetic basis of Zinner Syndrome remains unclear, and no specific inheritance pattern has been identified. The familial occurrence of the syndrome often complicates genetic counseling, as there is currently no identifiable genetic marker for Zinner Syndrome [20]. Despite the lack of definitive genetic evidence, there is growing interest in the potential genetic factors that may contribute to the development of

2025; Vol 14: Issue 1

Open Access

Zinner Syndrome. Abnormalities in the mesonephric (Wolffian) duct development, which lead to the characteristic renal and reproductive tract malformations, may have a genetic basis, though no specific mutations or chromosomal abnormalities have been conclusively identified. Several studies have explored the role of genetic syndromes associated with abnormal renal and reproductive tract development, but research into the genetics of Zinner Syndrome is still in its early stages. Advances in genomic research may eventually provide more insight into the genetic factors contributing to this condition [21].

In addition to genetic factors, environmental influences during pregnancy could play a role in the development of Zinner Syndrome. Exposure to certain teratogens or environmental toxins during critical periods of fetal development might disrupt the formation of the Wolffian duct, leading to the malformations seen in this syndrome. Although no specific environmental triggers have been conclusively linked to Zinner Syndrome, the potential role of prenatal environmental factors remains an area of ongoing research. Further studies are needed to explore how environmental exposures may contribute to the development of congenital malformations like those observed in Zinner Syndrome [22]. Zinner Syndrome is most commonly diagnosed in adult males seeking treatment for infertility. The presence of seminal vesicle cysts, which obstruct the ejaculatory ducts, is a key feature of the syndrome and leads to male infertility, most commonly in the form of azoospermia or oligospermia. Male infertility is one of the most significant clinical concerns for individuals with Zinner Syndrome. It is believed that the obstruction caused by seminal vesicle cysts prevents normal sperm flow, leading to difficulties in achieving natural conception. The high prevalence of infertility in Zinner Syndrome patients underscores the importance of early diagnosis and management to improve fertility outcomes. The diagnosis of Zinner Syndrome is often made during infertility evaluations, highlighting the role of fertility specialists in identifying this rare condition [23].

Pathophysiology and Etiology

The pathophysiology of Zinner Syndrome is primarily linked to the maldevelopment of the Wolffian duct during embryogenesis, leading to a cascade of anomalies in the renal and reproductive systems. The Wolffian duct is responsible for the formation of several male reproductive structures, including the seminal vesicles, vas deferens, and prostate, as well as the kidneys. Any disruption in the normal development of this duct during the first trimester of pregnancy can result in the characteristic features of Zinner Syndrome, which include renal agenesis or dysgenesis, seminal vesicle cysts, and, in some cases, prostate abnormalities [24]. The failure of the Wolffian duct to develop correctly results in the incomplete or absent formation of essential organs. Renal agenesis is one of the hallmark features of Zinner Syndrome, where one kidney fails to develop. This anomaly occurs due to the failure of the metanephros to form during fetal development. The lack of a fully functional kidney on one side can lead to long-term complications such as hypertension, chronic kidney disease, or even kidney failure in severe cases. Interestingly, patients often show compensatory hypertrophy in the remaining kidney, which takes over the functional load of the missing kidney [25].

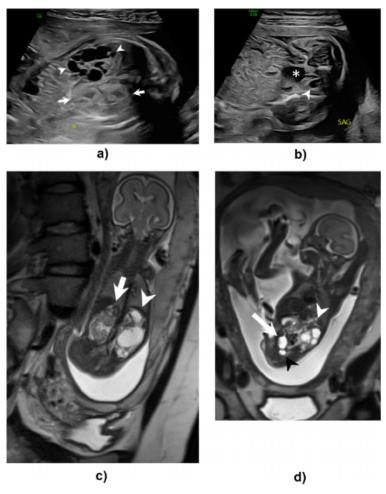
Seminal vesicle cysts are another defining characteristic of Zinner Syndrome. These cysts arise when the Wolffian duct malformation leads to the formation of abnormal structures in the seminal vesicles, preventing normal sperm passage through the ejaculatory ducts. The cysts obstruct the normal flow of sperm, leading to infertility in affected males. The obstruction caused by the cysts is a common cause of azoospermia or oligospermia, which is a significant reproductive challenge for individuals with Zinner Syndrome. These cysts may also be associated with other symptoms, including pelvic pain, urinary tract infections, or difficulty with ejaculation [26]. The etiology of Zinner Syndrome remains somewhat unclear, but it is believed to be primarily a result of abnormal

2025; Vol 14: Issue 1

Open Access

mesonephric duct development during fetal life. The mesonephric duct, or Wolffian duct, is responsible for the formation of several male internal reproductive structures, and disruptions during its development can lead to a variety of malformations. The exact causes of the abnormal development of the Wolffian duct are not fully understood, but both genetic and environmental factors are believed to contribute to the condition [27].

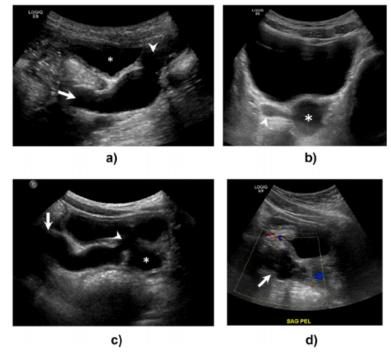
Genetically, Zinner Syndrome is considered to be sporadic, with most cases occurring in individuals without a clear family history of the condition. However, some familial cases have been reported, suggesting a potential genetic predisposition. This familial recurrence could be indicative of an inherited genetic mutation or a multifactorial inheritance pattern, where multiple genes or environmental factors interact to cause the syndrome. Despite the reported familial cases, no definitive genetic markers or chromosomal abnormalities have been conclusively identified in association with Zinner Syndrome [28]. The role of environmental factors during pregnancy in the etiology of Zinner Syndrome remains an area of ongoing research. Some studies suggest that exposure to certain teratogens or environmental toxins during critical periods of fetal development could contribute to the abnormal development of the Wolffian duct. These teratogens may disrupt the signaling pathways involved in organogenesis, leading to malformations. Though no specific environmental factors have been conclusively linked to Zinner Syndrome, further research into prenatal exposures and their potential effects on fetal development is warranted [29]. Additionally, it is important to consider the possibility of disruptions in the signaling pathways that govern the development of the Wolffian duct. Several studies have implicated key molecules and receptors involved in organogenesis, such as fibroblast growth factors (FGFs) and the Sonic hedgehog (Shh) signaling pathway, which play essential roles in the development of the kidneys and reproductive tract. Mutations or alterations in these signaling pathways may result in malformations of the kidneys and seminal vesicles, contributing to the development of Zinner Syndrome [30].


Clinical Presentation and Diagnosis

Zinner Syndrome is a rare congenital disorder that presents with a range of clinical features. The syndrome primarily affects the renal and reproductive systems, leading to the characteristic symptoms of renal agenesis and seminal vesicle cysts. The clinical presentation can vary widely depending on the severity of the malformations, the presence of associated complications, and the age at which the syndrome is diagnosed. Often, individuals with Zinner Syndrome may remain asymptomatic until adulthood, and many of those affected may first present with infertility or other reproductive concerns [31]. The most common clinical manifestation of Zinner Syndrome is male infertility. Seminal vesicle cysts are typically the underlying cause of infertility in affected individuals. These cysts, which arise from abnormal development of the mesonephric duct, obstruct the ejaculatory ducts, preventing the normal passage of sperm. As a result, many men with Zinner Syndrome present with azoospermia (absence of sperm in the ejaculate) or oligospermia (low sperm count). This obstruction leads to male infertility, making infertility evaluation and diagnosis one of the most frequent starting points for discovering the condition [32]. In some cases, patients may experience painful ejaculation, pelvic discomfort, or recurrent urinary tract infections due to the cystic obstructions. Renal involvement in Zinner Syndrome often manifests as unilateral renal agenesis or renal dysgenesis. This means that one kidney may be absent or underdeveloped. While individuals with unilateral renal agenesis may be asymptomatic, some may develop complications such as hypertension, proteinuria, or chronic kidney disease. As the remaining kidney compensates for the loss of function, patients may not experience significant symptoms initially. However, over time, renal dysfunction can occur, particularly if there is a progressive decline in kidney function. If left untreated, this may lead to renal

2025; Vol 14: Issue 1 Open Access

failure or the need for dialysis in severe cases [33].


In addition to the primary features of infertility and renal anomalies, individuals with Zinner Syndrome may also experience associated symptoms such as hematuria (blood in the urine) or flank pain. These symptoms can be indicative of underlying renal dysfunction, such as obstructive uropathy or kidney stones, although they are not always present in every case of Zinner Syndrome. Symptoms related to seminal vesicle cysts may include painful ejaculation or even the development of perineal or scrotal masses due to cyst formation. These masses are sometimes palpable on physical examination and may raise suspicion for the presence of seminal vesicle cysts [34]. The diagnosis of Zinner Syndrome is often challenging due to its rarity and the nonspecific nature of its symptoms. The condition can be mistaken for other causes of infertility or renal abnormalities, such as obstructive azoospermia or renal agenesis. In fact, many individuals with Zinner Syndrome are not diagnosed until they seek medical attention for infertility, making it important to consider this rare syndrome in the differential diagnosis of male infertility [35]. The complexity of its clinical presentation means that a comprehensive diagnostic approach is necessary to confirm the diagnosis and rule out other potential causes of the observed symptoms.

Prenatal imaging at 22 weeks 5 days of gestation (phenotypical male) suggesting possibility of Zinner's syndrome. a): Fetal US image in coronal plane depicting cystic changes in the left kidney in keeping with multicystic dysplatic kidney (arrowheads). Note the normal appearing right kidney (arrows). b): US image in oblique plane depicting a 6 mm cystic lesion (arrowhead) situated postero-inferior to the urinary bladder (asterisk). c): T2 weighted fetal MRI image (coronal fetal plane) showing normal appearing right kidney (arrow) and multicystic dysplastic left kidney (arrowhead). d): T2 weighted fetal MRI image (oblique fetal plane) showing multicystic dysplastic left kidney (white arrowhead) and a cystic structure (black arrowhead) postero-inferior to the urinary bladder (arrow). The cystic structure was confirmed as seminal vesicle cyst on post-natal surgery.

Figure 1: Prenatal imaging at 22 weeks 5 days of gestation (phenotypical male) suggesting possibility of Zinner's syndrome [36]

Imaging plays a crucial role in the diagnosis of Zinner Syndrome. Renal agenesis or dysgenesis is typically detected through ultrasound or other imaging modalities. Renal ultrasound is a non-invasive and cost-effective diagnostic tool that can reveal the absence or underdevelopment of the kidney on one side. For individuals with suspected Zinner Syndrome, renal ultrasound is often the first diagnostic test performed to evaluate the kidneys' size and structure. If renal agenesis is confirmed, further workup may be needed to assess renal function and determine whether any compensatory changes have occurred in the remaining kidney [36]. In addition to evaluating the renal system, imaging studies are also essential for identifying the presence of seminal vesicle cysts. These cysts can be detected using ultrasound or MRI, which provide detailed images of the reproductive tract.

Spectrum of ultrasound findings in Zinner syndrome. a): Left parasagittal US image of a 3-year-old male. Ureteric remnant (arrow) inserts directly on to the seminal vesicle cyst (arrowhead). Partially distended urinary bladder is anterior (asterisk). b): Transverse US image through the pelvis using the full urinary bladder as an acoustic window of a 5-year-old male showing a cystic structure to the left of midline in keeping with seminal vesicle cyst (asterisk). Internal low-level echoes indicate either inspissated secretions or proteinaceous contents. Note the normal appearing right seminal vesicle (arrowhead). c): Right parasagittal pelvic US image of a 2-year-old male. Ureteric remnant (arrow) forms a common channel (arrowhead) with seminal vesicle cyst (asterisk). The common channel subsequently drains into the bladder base. d): 17-year-old male with Zinner's syndrome. Right parasagittal duplex US image showing tubular anechoic structure (arrow) posterolateral to the urinary bladder (asterisk) indicating serpiginous dilatation of the seminal vesicle due to obstruction of ejaculatory duct.

Figure 2: Spectrum of ultrasound findings in Zinner syndrome

Transrectal ultrasound (TRUS) is a common method used to visualize the seminal vesicles and detect cystic structures. In some cases, MRI may be used for better delineation of the cysts and to assess their size, location, and potential impact on surrounding structures. MRI is particularly useful in cases where the cysts are large or when there are concerns about other coexisting anomalies, such as prostate malformations or obstructive uropathy [37]. The use of magnetic resonance imaging (MRI) has significantly advanced the diagnostic capabilities for Zinner Syndrome. MRI offers superior soft tissue contrast, enabling detailed visualization of both renal and

2025; Vol 14: Issue 1 Open Access

reproductive structures. In cases where ultrasound results are inconclusive or when the cysts are particularly large, MRI can provide more accurate information about the size, location, and potential complications of seminal vesicle cysts. MRI can also help to identify associated malformations in the prostate or vas deferens, which may occur in some patients with Zinner Syndrome [37]. In addition to traditional imaging, advancements in molecular imaging may eventually allow for better characterization of Zinner Syndrome at the genetic or molecular level. In cases where the diagnosis remains uncertain or when imaging results are inconclusive, further diagnostic testing may be required. Genetic testing may be considered to explore any potential genetic mutations or inherited factors that could predispose an individual to develop Zinner Syndrome. However, it is important to note that Zinner Syndrome is typically considered a sporadic condition, and no specific genetic markers have been definitively identified. As such, genetic testing may not always provide conclusive results, though it may be helpful in familial cases or for genetic counseling purposes [37].

Male Infertility and Reproductive Implications

Male infertility is a primary concern in Zinner Syndrome, with seminal vesicle cysts being the main cause. These cysts obstruct the ejaculatory ducts, preventing the normal passage of sperm, leading to infertility, typically manifesting as azoospermia or oligospermia. The cysts obstruct sperm flow, making natural conception impossible, and this obstruction is the primary clinical indicator of the condition [38]. The seminal vesicles are essential in producing seminal fluid and facilitating sperm transport. In Zinner Syndrome, cystic formations disrupt this function, preventing sperm from being ejaculated [39].

For many men, infertility is diagnosed before Zinner Syndrome, prompting further investigations. Imaging studies, such as ultrasound or MRI, confirm the presence of seminal vesicle cysts, which can be fluid-filled masses. After confirming the cysts, a thorough evaluation of the kidneys is done to assess for associated malformations, such as renal agenesis or dysgenesis [40]. While partial obstruction can result in reduced sperm counts or motility, infertility remains a significant issue, along with symptoms like pelvic pain and painful ejaculation, complicating quality of life [41]. Surgical treatments like cyst drainage or excision can alleviate the obstruction, but ART is often needed to achieve pregnancy, including in vitro fertilization (IVF) or sperm retrieval techniques like TESE or PESA [42,43].

Long-term fertility planning is important due to the potential for future fertility loss or declining sperm quality, especially with ongoing renal issues. Sperm banking before ART can help safeguard against this [40,44].

Management and Treatment Approaches

Management and treatment of Zinner Syndrome require a multidisciplinary approach due to the involvement of both renal and reproductive systems. The primary therapeutic goals are to address renal dysfunction and infertility, as these are the most prominent issues associated with the syndrome. The management strategy is individualized based on the severity of the symptoms, the degree of renal impairment, and the specific reproductive concerns of the patient [45]. For individuals with renal agenesis or renal dysgenesis, the focus of treatment is primarily on monitoring kidney function. Most patients with unilateral renal agenesis are asymptomatic, and the remaining kidney typically compensates for the loss of function. Regular monitoring of renal function through blood tests, including serum creatinine and glomerular filtration rate (GFR), is essential to detect any early signs of renal dysfunction. Blood pressure should also be regularly monitored, as hypertension can develop over time due to the compensatory workload on the remaining kidney. In cases where significant renal impairment occurs, interventions such as medication to control blood pressure and proteinuria may be necessary [46].

2025; Vol 14: Issue 1 Open Access

In more severe cases, where the remaining kidney is unable to maintain adequate function, renal replacement therapy, such as dialysis or kidney transplantation, may be required. However, these situations are relatively rare in Zinner Syndrome, as most individuals with the condition do not experience severe renal failure. Preventive measures such as maintaining a healthy lifestyle, managing blood pressure, and regular follow-up with a nephrologist are key to preventing complications [47]. The management of infertility, the most common concern in Zinner Syndrome, focuses on addressing the seminal vesicle cysts, which cause the blockage of the ejaculatory ducts. Surgical interventions, such as cyst drainage or excision, are typically the first-line treatments. The goal of these surgeries is to remove or drain the cysts, thus restoring sperm flow and improving fertility potential. Surgical outcomes can vary, and while some men experience a return to normal sperm ejaculation after surgery, others may still require assisted reproductive technologies (ART) to achieve pregnancy [48].

In cases where surgical removal of the cysts is not successful or if the cysts are too extensive, sperm retrieval techniques may be employed. Testicular sperm extraction (TESE) and percutaneous sperm aspiration (PESA) are commonly used to obtain sperm directly from the testes or epididymis, which can then be used for in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). These ART techniques have proven effective in men with obstructive azoospermia caused by seminal vesicle cysts, offering hope for biological fatherhood despite the underlying blockage [49]. In addition to ART, fertility preservation is an important consideration for men with Zinner Syndrome, particularly for those who may require future infertility treatments or face potential fertility loss due to aging or disease progression. Sperm banking is recommended for men prior to any surgical procedures or interventions that may affect fertility. This allows patients to preserve viable sperm for future use in ART procedures, ensuring that they have reproductive options available if fertility declines over time [50]. For men with Zinner Syndrome, a multidisciplinary approach involving urologists, nephrologists, and fertility specialists is essential. Urologists play a key role in managing the reproductive concerns, including performing surgeries on seminal vesicle cysts and advising on fertility treatment options. Nephrologists are critical in monitoring kidney function and managing any renal complications. Fertility specialists assist with ART, sperm retrieval, and counseling patients about reproductive options. This collaborative care approach ensures that both renal and reproductive health are addressed simultaneously, providing the best possible outcomes for the patient [51]. Psychological support also plays a vital role in the management of Zinner Syndrome. The emotional strain of infertility, combined with the rarity of the condition, can cause significant psychological distress. Counseling services for individuals and couples can help manage the emotional challenges that come with infertility diagnoses and treatment. This support is essential in helping patients cope with the psychological aspects of infertility, which can affect relationships, self-esteem, and overall well-being [52].

Prognosis and Long-Term Outcomes

The prognosis for individuals with Zinner Syndrome largely depends on the severity of the renal and reproductive system malformations. For those with unilateral renal agenesis, the outlook is generally positive, as the remaining kidney typically compensates for the absence of the other. Most individuals with this condition do not experience significant renal complications, and the remaining kidney is often sufficient to maintain normal renal function throughout life. However, regular monitoring for early signs of hypertension or kidney disease is essential to detect potential complications [53]. Regarding fertility, male infertility is the most significant long-term concern for individuals with Zinner Syndrome. Seminal vesicle cysts, which cause the obstruction of ejaculatory ducts, often lead to azoospermia or oligospermia. Surgical intervention to remove or drain the cysts can improve sperm flow and may restore fertility. However, success rates vary, and some individuals may still require assisted

2025; Vol 14: Issue 1 Open Access

reproductive technologies (ART) such as sperm retrieval and in vitro fertilization (IVF) [54]. While ART offers a path to fatherhood for many, the underlying fertility challenges may persist, requiring ongoing reproductive management [55].

In the long term, with appropriate management, most individuals with Zinner Syndrome can lead normal lives. Kidney function is usually stable, and fertility issues can be addressed with ART or surgical interventions. However, the psychological impact of infertility and the potential for chronic medical issues related to renal function may require long-term emotional and psychological support [56, 57]. Regular follow-up with a multidisciplinary team is key to ensuring the best possible outcomes [58, 59].

Table 1: Future Directions and Research Gaps

Research Area	Future Directions & Research Gaps	References
Genetic Basis	Further studies are needed to identify the genetic underpinnings of	[60]
	Zinner Syndrome, as current knowledge lacks specific markers or	
	mutations.	
Diagnostic	Improved diagnostic methods, such as high-resolution MRI or 3D	[61]
Techniques	imaging, are necessary to better visualize and assess seminal vesicle	
	cysts and renal anomalies.	
Male Infertility	Research into fertility-preserving techniques or novel ART	[62]
Treatment	approaches, including stem cell therapies, could improve outcomes for	
	patients with infertility due to Zinner Syndrome.	
Long-Term Renal	Investigation into the long-term renal health of individuals with Zinner	[63]
Outcomes	Syndrome is essential to identify early markers of kidney dysfunction	
	and improve preventive measures.	
Patient Registries	Multi-center studies and patient registries are needed to gather data on	[64][65]
and Multi-Center	the prevalence, outcomes, and long-term health of individuals, which	
Studies	will guide future treatments and therapeutic strategies.	

Conclusion

In conclusion, Zinner Syndrome is a rare and complex condition that involves both renal and reproductive system malformations, primarily affecting males. The condition's hallmark features unilateral renal agenesis and seminal vesicle cysts—result in significant reproductive challenges, most notably male infertility. Early diagnosis, often made during infertility evaluations, is crucial for effective management. Imaging techniques such as ultrasound and MRI are vital tools in confirming the diagnosis and identifying associated malformations. While renal function is usually preserved in affected individuals, ongoing monitoring is essential to detect potential long-term complications. Reproductive management often involves surgical intervention to address seminal vesicle cysts, with assisted reproductive technologies (ART) offering a valuable solution for many patients. Despite the challenges, the long-term prognosis is generally positive, especially with appropriate medical care and early intervention. However, the rarity of the syndrome and its variability in clinical presentation emphasize the need for a multidisciplinary approach to care. Future research should focus on elucidating the genetic underpinnings, improving diagnostic techniques, and exploring new treatments for fertility restoration and renal preservation to enhance outcomes for those affected by Zinner Syndrome.

2025; Vol 14: Issue 1

Open Access

References

- 1. Abakar D, Badi FE, Sabiri M, El Manjra S, Lezar S, Essodegui F. Zinner syndrome. European Journal of Case Reports in Internal Medicine. 2021 Jun 3;8(6):002628.
- 2. Pereira BJ, Sousa L, Azinhais P, Conceição P, Borges R, Leão R, Brandão A, Temido P, Retroz E, Sobral F. Zinner's syndrome: an up-to-date review of the literature based on a clinical case. Andrologia. 2009 Oct;41(5):322-30.
- 3. Di Paola V, Gigli R, Totaro A, Manfredi R. Zinner syndrome: two cases and review of the literature. BMJ Case Reports CP. 2021 Jun 1;14(6):e243002.
- 4. Tan Z, Li B, Zhang L, Han P, Huang H, Taylor A, Li X. Classifying seminal vesicle cysts in the diagnosis and treatment of Zinner syndrome: a report of six cases and review of available literature. Andrologia. 2020 Feb;52(1):e13397.
- 5. Hofmann A, Vauth F, Roesch WH. Zinner syndrome and infertility—a literature review based on a clinical case. International Journal of Impotence Research. 2021 Mar;33(2):191-5.
- 6. Bearrick EN, Husmann DA. Screening for Zinner syndrome in patients with a congenitally solitary kidney: lessons learned. The Journal of Urology. 2023 Dec;210(6):888-98.
- 7. Julián Gómez E, Barrios-López M, Galante Mulki MJ, Herrán de la Gala D, González Humara B, Fernández Flórez A. Zinner syndrome: a radiological journey through a little known condition. Abdominal Radiology. 2024 Dec;49(12):4481-93.
- 8. Lin CC, Sheu JC, Tsai PS, Lee MD, Lin TH, Tsai JD. Zinner syndrome in children: clinical presentation, imaging findings, diagnosis, and outcome. Pediatric Nephrology. 2022 Dec;37(12):3075-84.
- 9. Sawaftah Z, Sawafta K, Hattab M, Al Rub AA, Sawafta O, Khamaysa J, Rajha HE, Dibas J, Daraghmeh M, Dibas Y. Zinner syndrome unveiled: Ectopic ureter and seminal vesicle cyst leading to urinary dysfunction: A case report. Radiology case reports. 2025 Mar 1;20(3):1721-5.
- 10. He J, Wei C, Huang Y, Xu F, Wang M, Chen Z. Zinner syndrome: report of a case and whole exome sequencing. Basic and Clinical Andrology. 2025 Mar 11;35(1):10.
- 11. Mehra S, Ranjan R, Garga UC. Zinner syndrome—a rare developmental anomaly of the mesonephric duct diagnosed on magnetic resonance imaging. Radiology case reports. 2016 Dec 1;11(4):313-7.
- 12. Huang Y, Han B, Huang Z, Huang Q, Wang T, Chen Y. Zinner's syndrome in two young middle-aged men: a case report and review of the literature. BMC urology. 2025 May 19;25(1):129.
- 13. Sada F, Cekaj E, Shazi O, Al-Madani A, Jahanian S, Nahar S, Musa J, Mamillo K, Musliu D, Ahadi M, Leniqi F. Challenging clinical presentation of Zinner syndrome. Radiology Case Reports. 2023 Jan 1;18(1):256-9.
- 14. Cito G, Sforza S, Gemma L, Cocci A, Di Maida F, Dabizzi S, Natali A, Minervini A, Carini M, Masieri L. Infertility case presentation in Zinner syndrome: Can a long-lasting seminal tract obstruction cause secretory testicular injury?. Andrologia. 2019 Dec;51(11):e13436.
- 15. Al-Smair A, Mahmoud MM, Attal MT, Alzawawi IN. A variant of Zinner syndrome with ectopic ureteral insertion into the seminal vesicle. Radiology case reports. 2024 Jul 1;19(7):2663-8.

16. Trost LW, Casalino DD, Brannigan RE. Ultrasound in male infertility. InUltrasound Imaging in Reproductive Medicine: Advances in Infertility Work-up, Treatment, and ART 2013 Nov 12 (pp. 207-227). New York, NY: Springer New York.

- 17. Takemura K, Sato A, Morizawa Y, Kufukihara R, Iwasa S, Satoh H. Seminal vesicle cysts with upper urinary tract abnormalities: a single-center case series of pediatric Zinner syndrome. Urology. 2021 Mar 1;149:e44-7.
- 18. Singh R, Hamada AJ, Bukavina L, Agarwal A. Physical deformities relevant to male infertility. Nature Reviews Urology. 2012 Mar;9(3):156-74.
- 19. Thinh ND, Lam VD, Le My NT, Dung LT, The ND, Loc TQ. Diagnosis of Zinner syndrome: A case of rare occurrence. Radiology Case Reports. 2025 Oct 1;20(10):4921-4.
- 20. Acién P, Acién M. Renal agenesis, associated genital malformations, and responsible genes. Fertility and Sterility. 2021 Nov 1;116(5):1370-1.
- 21. Brockwell M, Hergenrother S, Satariano M, Shah R, Raina R. Pathophysiology of congenital anomalies of the kidney and urinary tract: A comprehensive review. Cells. 2024 Nov 11;13(22):1866.
- 22. Udayakumar N, Smith E, Boone A, Porter KK. A common path: magnetic resonance imaging of Müllerian and Wolffian duct anomalies. Current Urology Reports. 2023 Jan;24(1):1-9.
- 23. Wu K, Hu Y, Xie Y, Zhang S, Wang X. Zinner syndrome in adult male: a rare case report. Translational Andrology and Urology. 2025 Mar 26;14(3):848.
- 24. Grund C, Krieg VM, Leissner J. And there was Zinner's syndrome-a rare differential diagnosis. Urologie (Heidelberg, Germany). 2022 Apr 14;61(11):1243-8.
- 25. Chen F, Qin H, Zhu L, Xiong W. Zinner syndrome with seminal vesicles stones: A rare case report and literature review. International journal of surgery case reports. 2025 Mar 1;128:110959.
- 26. Demaeyer L, Holz S, Pamart D, Taylor S, Naudin M. Robotic management of painful Zinner syndrome, case report and review of literature. International Journal of Surgery Case Reports. 2020 Jan 1;73:61-4.
- 27. Bas D, Nalbant MO. Zinner syndrome: radiologic diagnosis in a rare case. Current Medical Imaging. 2024 Jan;20(1):e290823220480.
- 28. Patil T, Verma A, Sachdeva R, Kumar S, Gaidhane S, Sah S, Satapathy P, Mehta R, Simiyu BW, Suresh V. Zinner Syndrome Presenting With Chronic Pelvic Pain and Ejaculatory Dysfunction. IJU Case Reports. 2025 Apr 10.
- 29. Boui M, Edderai M, Zamani O, El Menaoui O, Hommadi A, Lahkim M, Boumdine H, Salaheddine T, En-Nouali H, El Fenni J, Saouab R. Zinner syndrome: A rare congenital cause of infertility. Radiology Case Reports. 2024 Dec 1;19(12):5586-8.
- 30. Juho YC, Wu ST, Tang SH, Cha TL, Meng E. An unexpected clinical feature of Zinner's syndrome—A case report. Urology Case Reports. 2015 Sep 1;3(5):149-51.
- 31. Militaru V, Mihaly ZA, Ilea C, Coman M, Stanciu M, Crisan N, Coman I. Zinner syndrome—case report. Medicine and Pharmacy Reports. 2021 Aug 10;94(Suppl No 1):S47.
- 32. Jiang XS, Wang HJ, Lin JH, Guo Y, Sun CH, Lin L, Guan J. Zinner's syndrome: clinical features and imaging diagnosis. Asian journal of andrology. 2018 May 1;20(3):316-7.
- 33. Soliman AA, Alshukami AA, AlZuber WH. Zinner's syndrome, radiological diagnosis for a rare syndrome with non-specific clinical presentation: case report. Egyptian Journal of Radiology and Nuclear Medicine. 2020 Oct 29;51(1):217.

34. Djidda A, Badi FE, Sabiri M, Elmanjra S, Lezar S, Essodegui F. Zinner Syndrome. European Journal of Case Reports in Internal Medicine. 2021 Jun 3.

- 35. Jarzemski P, Listopadzki S, Kowalski M. Laparoscopic removal of a congenital seminal vesicle cyst in Zinner's syndrome. JSLS: Journal of the Society of Laparoendoscopic Surgeons. 2014 Apr;18(2):367.
- 36. Shashi KK, Garg H, Richard NY, Chow JS. Zinner syndrome in pediatric age group: An underdiagnosed entity. Journal of Pediatric Urology. 2024 Aug 1;20(4):705-e1.
- 37. Zare A, Narouie B, Moloudi F, Moosavian F, Ahmadzade M, Rouientan H. The role of radiology in diagnosis of Zinner syndrome in a young man with scrotal pain. Radiology case reports. 2023 Nov 1;18(11):4103-5.
- 38. Talwar HS, Mittal A, Narain TA, Panwar VK. A wide spectrum of rare clinical variants of Zinner syndrome. BMJ Case Reports CP. 2021 Jan 1;14(1):e239254.
- 39. Anwaar A, Haq IU, Ali RN, Raja RS, Karamat RI, Irfan S, Akilimali A. Zinner syndrome: unilateral renal agenesis with unique findings in a 19-year-old patient from Pakistan—a case report with literature review. Annals of Medicine and Surgery. 2025 Jul 1;87(7):4608-13.
- 40. Kori R, Bains L, Lal P, Gupta S. Zinner syndrome mimicking bladder outlet obstruction managed with aspiration. Urology Annals. 2019 Oct 1;11(4):449-52.
- 41. Beyene E, Tadele E, Negassa M. Zinner syndrome: A first case report from Ethiopia. Radiology Case Reports. 2023 Jan 1;18(1):86-90.
- 42. Pramod V, Sanjay SC, Kumar ST. Imaging in Zinner Syndrome, A Case Series: The Wolf in Sheep's Clothing. Urology Case Reports. 2025 Jan 1;58:102889.
- 43. Ghonge NP, Aggarwal B, Sahu AK. Zinner syndrome: A unique triad of mesonephric duct abnormalities as an unusual cause of urinary symptoms in late adolescence. Indian Journal of Urology. 2010 Jul 1;26(3):444-7.
- 44. Reddy MN, Verma S. Lesions of the seminal vesicles and their MRI characteristics. Journal of clinical imaging science. 2014 Oct 31;4:61.
- 45. Pina-Vaz T, Dias N, Silva CM, Silva JA. Zinner's syndrome, a retrospective series of three cases: different strategies to the same problem. BMJ Case Reports CP. 2021 Oct 1;14(10):e242757.
- 46. Kardoust Parizi M, Shakhssalim N. Management of Zinner's syndrome associated with contralateral seminal vesicle hypoplasia: a case report. Case reports in urology. 2013;2013(1):494215.
- 47. Uetani M, Yamabe F, Hori S, Aoki H, Sakurabayashi K, Okawa M, Kobayashi H, Nakajima K, Nagao K, Mitsui Y. Successful treatment of ejaculation pain with silodosin in patient with Zinner syndrome: a case report. Translational Andrology and Urology. 2023 May 4;12(5):823.
- 48. Ostrowska M, Grześk M, Kaczyński S, Skwara D, Kulik K, Kowalski F, Ostrowski A, Drewa T. Zinner syndrome—a rare cause of recurrent epididymitis and infertility. Clinics and Practice. 2021 Dec 9;11(4):942-6.
- 49. Lau L, Patel KS, Santisi F, Germaine R, Jeph S. Zinner Syndrome: The Diagnosis and Management of a Rare Urogenital Malformation. Case Reports in Radiology. 2024;2024(1):1718485.
- 50. Elder K. In vitro fertilization. Preimplantation Genetic Diagnosis. 2001 May 1:53-78.
- 51. Sharma PK, Yashaswinii P, Aram A, Rk K, Subramonian SG. Zinner Syndrome in Young Adult Males: A Case Series and Literature Review. Cureus. 2024 May 2;16(5).

52. Sundar R, Sundar G. Zinner syndrome: an uncommon cause of painful ejaculation. Case Reports. 2015 Mar 6;2015:bcr2014207618.

- 53. Kelly NP, Fuentes-Bonachera A, Shields WP, Cullen IM, Daly PJ. Long-Term Surveillance and Laparoscopic Management of Zinner Syndrome. Case Reports in Urology. 2021;2021(1):6626511.
- 54. Khalil NC, Ayyad M, Albandak M, Aljundi A, Qabaja M. A rare presentation of Zinner syndrome as recurrent epididymitis: A case report. SAGE Open Medical Case Reports. 2023 Sep;11:2050313X231200111.
- 55. Takeshima T. Potential pharmacotherapy for Zinner syndrome. Translational Andrology and Urology. 2023 Jul 13;12(7):1047.
- 56. Acuña-Pacheco A, González-Rojas E, Aguilar-Ordaz PI, Rodelo-López JP, Bueno-Mendoza B, Hernández-Rivera I, Jungfermann-Guzman JR, Favela-Camacho JR. Zinner Syndrome: Case report of atypical symptoms and literature. Urology Case Reports. 2025 May 1;60:102986.
- 57. Xing Q, He L, Gao X, Zhang C, Luo X, Gao X, Wu Y, Zhang L, Guo F. Giant seminal vesicle cyst with hemorrhage in Zinner syndrome: A case report. Medicine. 2022 Dec 16;101(50):e31577.
- 58. Rose JM, Banthia R, Tamboli Z, Lal H. Zinner syndrome: a rare diagnosis in infancy. BMJ Case Reports CP. 2022 May 1;15(5):e248558.
- 59. Silveri M, Zaccara A, Colajacomo M, Matarazzo E, Camassei FD, De Gennaro M. ... And if this was a Zinner's syndrome?. Journal of Pediatric Surgery Case Reports. 2014 Dec 1;2(12):530-2.
- 60. Dai R, Jiang F, Fan J, He D, Li L, Wu K. Clinicopathological and genetic features of Zinner's syndrome: two case reports and review of the literature. Frontiers in Urology. 2023 Oct 19;3:1257368.
- 61. Elsorougy A, Farg H, Badawy M, Shebel H, El-Ghar MA, Abdelhamid A. Role of magnetic resonance imaging in evaluation of ejaculatory duct in Zinner's syndrome: case series of five patients and review of the literature. Egyptian Journal of Radiology and Nuclear Medicine. 2022 Oct 17;53(1):225.
- 62. Liu J, Shi Y, Diao Y, Zeng X, Fu P. Strategies to improve long-term outcomes for patients with chronic kidney disease in China. Kidney Diseases. 2023 Aug 22;9(4):265-76.
- 63. Adorisio O, Orazi C, Gregori LM, De Peppo F, Silveri M. Zinner syndrome in pediatric patients: rare disease leading to challenging management. Frontiers in Pediatrics. 2024 Jan 24;12:1353960.
- 64. Bjurulf E, Reisæter LA, Rajkumar H, Chaudhury AA, Honoré A, Hopland-Nechita F, Moen CA, Haugland JN, Rawal R, Roth I, Vo AK. Zinner syndrome: Clinical insights from Western Norway. Urologia Journal. 2025 Jan 13:03915603251335609.
- 65. Tang G, Feng Y, Wang Z, Yang Y, Liu Y, Bai Z, Pan J. A rare variant of zinner syndrome with ejaculatory duct cyst: case report and challenges in diagnosis and management. BMC urology. 2024 Dec 4;24(1):263.