Open Access

Iatrogenic Type A Aortic Dissection: A Narrative Review Of Endovascular And Surgical Management Strategies And Outcomes

Dr. Sameeksha Pal¹, Dr Deepali Sundari Verma²

- 1. PG scholar, Department of Shalya Tantra, Government Ayurvedic College & Hospital, Patna, Bihar.
- 2. Professor and head of the department, Department of Shalya Tantra, Government Ayurvedic College & Hospital, Patna, Bihar.

Corresponding Author

Dr. Sameeksha Pal, PG scholar, Department of Shalya Tantra, Government Ayurvedic College & Hospital, Patna, Bihar.

Email Id: sameeksha.pal1995@gmail.com

Cite this paper as: Dr. Sameeksha Pal, Dr Deepali Sundari Verma (2024). Iatrogenic Type A Aortic Dissection: A Narrative Review Of Endovascular And Surgical Management Strategies And Outcomes. *Frontiers in Health Informatics*, 13 (8) 6680-6693

Abstract:

latrogenic Type A aortic dissection (iTAAD) is a fatal but infrequent complication of or following cardiac and endovascular interventions. With advancing interventional and surgical cardiovascular technology, paradoxically, iTAAD incidence has risen, prompting a reassessment of current diagnostic, therapeutic, and prevention concepts. This narrative Review strives to integrate recent evidence of surgical and endovascular repair of iTAAD, summarize trends in outcomes, and enumerate the most important innovations that have impacted clinical practice. Indexed journals and contemporary clinical evidence (2021-2025) were systematically searched. Six extremely relevant studies, including case reports, systematic reviews, and observational analysis, were selected for inclusion and analysis based on direct relevance to iTAAD pathophysiology, surgical treatment, and perioperative outcomes. Evidence suggests that while iTAAD remains treated mainly by open surgical repair, complete endovascular solutions are increasingly viable options in meticulously selected high-risk or delay-presenting patients. Success at operation is strongly associated with early detection, dissection anatomical extent, and institutional expertise. Comparative outcomes suggest increased mortality in iTAAD vis-a-vis spontaneous dissection but with the introduction of newer hybrid and branched stent technology. iTAAD management necessitates an update in a multidisciplinary approach based on early diagnosis and tailored treatment. While surgery remains the prevailing modality, endovascular innovation transforms the therapeutic landscape and challenges prevailing dogma. Prospective registries are required to validate optimal algorithms and improve patient survival.

Keywords: Aortic injury, Cardiovascular interventions, Endovascular therapy, Postoperative complications, Risk stratification, Surgical trends

Introduction & Background

Learning Aortic Dissection and Clinical Significance

Acute aortic dissection is among the most catastrophic cardiovascular emergencies, consisting of an intimal tear of the aorta to permit blood to enter the medial layer to create a false lumen. Stanford Type A aortic dissections of the ascending aorta are particularly lethal, with mortality increasing by 1–2% per hour without treatment [1]. These dissections have traditionally preceded spontaneous onset secondary to medial degeneration due to hypertension, connective tissue

Open Access

disease, or atherosclerosis. However, there is a less frequent but increasingly recognized subgroup, which is iatrogenic [2].

Defining Iatrogenic Type A Aortic Dissection (iTAAD)

Iatrogenic Type A aortic dissection (iTAAD) is a dissection of the ascending aorta resulting from direct medical or surgical intervention. Although rare, estimated to occur in 0.06–0.23% of cardiac surgery and less frequently following catheter-based procedures, it is associated with a stunningly high mortality [3]. The disease can occur intraoperatively, minutes after the procedure, or days postprocedure, typically secondary to mechanical injury from cannulation, clamping, balloon inflation, guidewire manipulation, or stent deployment. iTAAD thwarts existing therapeutic paradigms with its abrupt onset, multiplanar anatomical problems, and high-risk patient subset [4].

Incidence and Procedural Triggers

The growing use of minimally invasive and catheter-based interventions has unintentionally increased the incidence of iTAAD. All these interventions, such as percutaneous coronary interventions (PCI), transcatheter aortic valve replacements (TAVR), and thoracic endovascular aortic repairs (TEVAR), have been associated with retrograde Type A dissections [5]. Though unusual, these result from mechanical stress on the aortic wall, more so in the presence of concomitant aortic dilation or stiff connective tissue. Intraoperative interventions such as aortic cannulation for cardiopulmonary bypass, aortic cross-clamping, or venting also cause dissection when technical precision is lost [6].

Clinical Presentation and Diagnostic Challenges

iTAAD patients may present with acute hemodynamic collapse, chest pain, neurological presentation, or signs of visceral or limb malperfusion. In sedated or postoperative patients, symptoms are masked or muted, leading to a delay in diagnosis. Imaging must be emergent, typically with contrast-enhanced CT angiography to characterize the dissection flap, identify true vs false lumen, and guide surgery. Delayed diagnosis severely aggravates prognosis; thus, the high degree of suspicion must be preserved following high-risk interventions [7].

Surgical Urgency and Therapeutic Evolution

Historically, emergent open surgical repair was the only effective treatment for iTAAD, including replacement of the ascending aorta, with or without hemiarch or total arch procedures. Effective as it is, this is fraught with catastrophic risks especially in comorbid or prior sternotomized patients [8]. Recent institutional reports and case series have noted endovascular stenting as a possible option in selected cases, namely in delayed or retrograde dissections in which anatomy is amenable to safe deployment. Such techniques involve branched and fenestrated grafts or hybrid techniques involving debranching and endograft delivery. Although not yet standardized, such innovations are altering management protocols and expanding the armamentarium available for high-risk cases [9].

Rationale for a Narrative Review

Due to the rarity of iTAAD and the heterogeneity of its etiology, presentations, and treatment, clinical guidelines are not specific, and no randomized clinical trials are available. An overdue and critical systematic narrative review is thus provided here to integrate current evidence, compare results between endovascular and surgical treatments, and delineate evidence gaps. Integrating current high-quality literature and case-based evidence, the Review tries to supply clinicians with a systematic overview of iTAAD pathogenesis, technical considerations in management, and novel trends that may shape future treatment strategies.

The reason behind the Review

iTAAD is an uncommon, life-threatening condition with diverse etiology and restricted standardized treatment protocols. The absence of randomized trials and dissimilar clinical data creates a central practice evidence gap. This Review aims to integrate new evidence, establish new treatment paradigms, and facilitate evidence-based clinical decisions in this complex surgical scenario.

Scope of the Review

This Review discusses the mechanism and procedural triggers of iatrogenic Type A aortic dissection, with special

2024; Vol 13: Issue 8 Open Access

reference to diagnostic methods and imaging modalities for early detection. It compares open surgical repair with newer endovascular methods, discusses postoperative complications and results, and presents recent information from clinical studies published in 2021-2025.

Purpose of the Review

To discuss and critique recent surgical and endovascular methods of treatment of iatrogenic Type A aortic dissection widely, highlighting clinical results, new technologies, and practical issues.

Review of Literature

Current literature emphasizes the growing appreciation and sophistication of iatrogenic Type A aortic dissection (iTAAD). Biancari et al. (2025) compared Type A dissection surgical results and emphasized the impact of the extent of repair on long-term survival, especially in emergencies [10]. Bauer et al. (2025) alluded to iatrogenic dissections occurring in the process of minimally invasive valve surgery and alluded to surgical technique and intraoperative awareness as pivotal to prevention [11]. Manan et al. (2024) reported a case of iTAAD after percutaneous coronary intervention and emphasized the danger of catheter-based manipulation of the vulnerable aortic segments [12].

Carrel et al. (2023) presented a detailed account of acute aortic dissection, establishing risk factors and emphasizing surgical repair [13]. Pitts et al. (2021) presented newer surgical techniques, contrasting conventional open repairs with hybrid and minimally invasive techniques in acute Type A dissections [14]. Likewise, Ali-Hasan-Al-Saegh et al. (2023) performed a meta-analysis of retrograde Type A dissections after TEVAR for Type B dissections, comparing it with device-induced iatrogenic injury [15] as evident from Table/Fig 1.

Table/Fig 1: Literature Review – Previous Work [10-15].

Authors Key Finding		Research Focus	Challenges/Limitations	Future Scope
(Year)				
Biancari et al. (2025) [10].	The extent of aortic repair influences outcomes in Type A dissection surgery.	Surgical extent vs. outcomes in Type A dissection	Lack of consensus on the optimal surgical extent	Define optimal surgical extent by patient profile
Bauer et al. iTAAD can occur during minimally invasive valve surgeries due to technical risks		Intraoperative causes of iTAAD in valve surgeries	Small sample size; limited generalizability	Develop preventive protocols during valve surgery
Manan et al.	PCI procedures can	Case report of iTAAD	Single case report; lacks	Aggregate similar
(2024) [12].	cause iTAAD,	after PCI	broader applicability	case data for trend
	requiring emergency			analysis
	surgical intervention			
Carrel et al.	Acute aortic dissection	Comprehensive	Not focused solely on	Differentiate
(2023) [13].	needs rapid diagnosis	overview of acute	iatrogenic cases	spontaneous vs.
	and immediate	aortic dissection		iatrogenic
	surgical treatment.			dissection in studies
Pitts et al.	Open and hybrid	Techniques in surgical	Lack of patient-level	Compare hybrid vs.
(2021) [14].	surgical techniques	treatment of acute	outcome standardization	traditional repair
, , , , ,	offer varied outcomes	Type A dissection		outcomes
	for Type A dissection.			

Onen Access

Frontiers in Health Informatics ISSN-Online: 2676-7104

2024; VOI	13: Issue 8		1		
Ali-Hasan-	TEVAR for Type B	Meta-analysis of	Limited data on long-term	Explore safer	
Al-Saegh et	dissection may lead to	retrograde iTAAD	endovascular outcomes	device designs to	
al. (2023)	retrograde iTAAD in	after TEVAR		prevent retrograde	
[15].	some patients			dissection	

Legend: Summarization of past work reviewing surgical outcomes, problems, and evolving strategies for iatrogenic aortic dissection.

Materials and Methods

Locating Data:

An in-depth search was conducted from PubMed, Scopus, and ScienceDirect for peer-reviewed articles on iatrogenic Type A aortic dissection (iTAAD). Search words like iatrogenic aortic dissection, endovascular repair, ascending aorta surgery, and retrograde dissection were combined. Those publications between January 2021 and May 2025 were deemed current and pertinent.

Data Collection:

Titles and abstracts were filtered, and full texts were read to include them. Expert consensus statements, systematic reviews, case reports, and observational studies discussing the etiology, diagnosis, and management of iTAAD were eligible sources to be included. High-impact cardiovascular and surgical journals were prioritized.

Data Extraction

Key information points such as study design, patient population, mechanism of dissection, intervention type (surgical vs. endovascular), complications, and clinical results were extracted and tabulated in organized templates. Duplicates and studies with indeterminate procedures or outcomes were not included.

Synthesizing Data:

Extracted data were qualitatively synthesized. Comparative themes were drawn between studies to identify changing trends, clinical issues, and areas needing standardized care. Results were categorized by procedure context and therapeutic strategy to Project an integrated picture of the contemporary management scenario of iTAAD.

Result

Procedural Triggers and Mechanisms of Iatrogenic Type A Aortic Dissection

Iatrogenic Type A aortic dissection (iTAAD) is a lethal complication of mechanical trauma to the intimal layer of the ascending aorta during cardiovascular surgery. The most common intraoperative causes are aortic cannulation for cardiopulmonary bypass, aortic cross-clamping, and aortic venting [16]. Excessive force, positioning the cannulations in the wrong place, or the cannulation of a diseased or dilated aortic segment can be responsible for intimal disruption and false lumen creation. Clamping over calcified or hard walls of the aorta can propagate a dissection flap. Intraoperative injuries can be occult intraoperatively but have an increased rate of progression in the early postoperative period, eventually leading to hemodynamic instability or cardiac tamponade [17].

During catheter-based interventions, like percutaneous coronary intervention (PCI), transcatheter aortic valve replacement (TAVR), and thoracic endovascular aortic repair (TEVAR), trauma may occur due to guidewire manipulation, balloon inflation, or device deployment. Retrograde dissections extending to the ascending aorta have been particularly reported following TEVAR for type B dissections caused by high-pressure jet streams and stent-induced wall trauma [18]. The risk is also increased in patients with a history of aortic dilation, cystic medial necrosis, or connective tissue diseases, where the aortic wall is already compromised. Oversizing of the device, excessive torque, or repositioning during deployment may increase mechanical stress, leading to a tear [19]. With increasing endovascular intervention, heightened awareness and procedural vigilance are required to avoid iatrogenic injury and to facilitate safe passage through the ascending aorta, as in Table/Fig 2.

Table/Fig 2: Iatrogenic Type A Aortic Dissection – Procedural Triggers and Mechanisms [16-19].

2024;	Vol 13: Issue 8				Open Access
Author	Surgical Causes of	Catheter-Based	Mechanisms of	High-Risk Patient	Prevention
(First) et	iTAAD	Intervention Risks	Aortic Injury	Factors	Strategies
al.					
Klaudel	Not the primary	Extensive;	Describes shear	Notes	Advocates for
et al.	focus; mentions	describes wire,	stress, intimal	hypertension,	gentle
[16].	propagation post-	catheter, and	tears, and	advanced age, and	manipulation and
	surgical	balloon-induced	propagation along	atherosclerosis	imaging-guided
	manipulation	dissections	weakened aorta		procedures
Al-	Briefly notes	Summarizes PCI	Outlines	Mentions of	Recommends
Gburi et	surgical cannulation	and TAVR-related	mechanical	connective tissue	procedural
al. [17].	and clamping as	dissection risks	trauma and	disorders and	planning and early
	potential triggers		pressure-induced	vessel fragility	suspicion
			wall rupture		protocols
Safdar et	Highlights injury	Detailed focus on	Emphasizes	Highlights	Suggests
al. [18].	during aortic root	dissection during	guidewire-related	calcified vessels	minimizing
	instrumentation in	complex	entry tear and	and chronic total	contrast load and
	CTO procedures	percutaneous	balloon over-	occlusion	stepwise dilations
		coronary	expansion		
		interventions			
Murillo	Acknowledges	Explains catheter-	Illustrates	Includes inherited	Encourages
et al.	surgical trauma as	induced dissection	imaging evidence	disorders and	vigilant imaging
[19].	one trigger in acute	as part of broader	of flap	chronic	followup and
	syndromes	aortic syndromes	progression and	hypertension	early diagnosis
			wall dissection		

Legend: This table summarizes prominent procedural and anatomical contributors to iTAAD from four seminal studies.

Diagnostic Approaches and Imaging Modalities in iTAAD Diagnosis [20-23].

Early and correct diagnosis of iatrogenic Type A aortic dissection (iTAAD) is paramount, as clinical deterioration may be rapid and lethal. Awake iTAAD may manifest with acute chest pain, hypotension, or neurological deficit, but in sedated or postoperative settings, these may be masked, and diagnosis may be difficult [20]. High suspicion is required for early detection, particularly after high-risk interventions such as cardiopulmonary bypass, PCI, or TEVAR. Hemodynamic instability, elevated lactate, pericardial effusion, or unexplained ventricular dysfunction should raise a suspicion of aortic trauma and prompt investigation [21].

Computed tomography angiography (CTA) is the gold standard for iTAAD diagnosis, providing high-resolution imaging of aortic lumen, dissection flap, and branch vessel compromise. CTA is best suited for evaluating the extent of dissection and preoperative planning for surgery or endovascular repair. Transesophageal echocardiography (TEE) is a valuable intraoperative imaging modality for real-time imaging of the ascending aorta and detection of intimal tears or false lumen formation before chest closure [22]. TEE is also critical for valve repair or replacement and cannulation to enable accurate instrument placement and identification of dissection as it happens. TEE can hint at iTAAD when CTA is unavailable in real-time in emergencies. These modalities are part of a complementary diagnostic approach, enabling early detection, procedural planning, and postoperative followup in at-risk or suspected iTAAD patients [23], as shown

2024; Vol 13: Issue 8 Open Access

in Table/Fig 3.

Table/Fig 3 Diagnostic Approaches and Imaging Modalities for Introgenic Type A Aortic Dissection (iTAAD) [20-23].

Author et al.	Clinical	Imaging	Role of CTA	Intraoperative	Complementary
	Presentation and	Modalities for		TEE	Diagnostic
	Challenges	Diagnosis			Framework
Acharya et al.	Describes sudden	Recommends	Highlights CTA	Supports TEE as	Stresses multimodal
[20]	chest pain and	CTA, TEE, and	as first-line	a real-time	imaging integration
	hemodynamic	MRI as	imaging for	intraoperative	for accurate
	instability;	diagnostic	diagnosing Type	and ICU	diagnosis and risk
	diagnosis delayed	cornerstones	A dissection	monitoring tool	assessment
	by symptom				
	overlap with ACS.				
Cox et al. [21].	It focuses on	Briefly	Mentions CT	Not discussed in	Notes inflammatory
	systemic signs	addresses CT	utility in	depth; TEE not	markers as an
	linked to	and MRI for	detecting aortic	emphasized	adjunct to imaging
	inflammation but	aortic	wall changes		
	is less specific to	pathology; not			
	and presentation.	centered on			
		iTAAD			
Gudbjartsson	Highlights classic	Supports TEE	Reinforces CTA	Recommends	Proposes the use of
et al. [22].	symptoms and	and CTA as	as the gold	TEE for	clinical scoring and
	diagnostic	rapid, primary	standard for	intraoperative	rapid imaging
	urgency in acute	diagnostic tools	dissection	diagnosis and	access
	settings		visualization	monitoring	
Ciccone et al.	Emphasizes	Systematic	Explores CTA's	Presents TEE as	Advocates layered
[23].	nonspecific	comparison of	high sensitivity,	vital for bedside	diagnostic pathway
	symptoms;	CTA, TEE,	real-time 3D	and	using combined
	outlines	MRI, and chest	reconstruction	intraoperative use	modalities
	diagnostic	X-ray			
	confusion in early				
	dissection stages.				

Legend: The above table depicts how extensive studies encompass imaging-based diagnostic methods for iTAAD, including CTA, TEE, and combined models.

Open Surgical Repair: Indications, Techniques, and Clinical Outcomes

Open surgical repair remains the gold standard for managing iatrogenic Type A aortic dissection (iTAAD), particularly in hemodynamic instability, pericardial tamponade, or aortic root involvement. The key surgical undertakings are the extirpation of the entry tear, aortic continuity restoration, and prevention of rupture or malperfusion [24]. Hemiarch replacement is employed for dissection limited to the ascending aorta and proximal arch, with less operative time and risk of cerebral ischemia. Total arch replacement is employed if the dissection extends beyond the innominate artery or with aneurysmal disease or branch vessel damage. The decision is based on anatomical extent, timing of intervention,

Open Access

and patient stability [25].

Outcomes in iTAAD are highly variable and dependent on early diagnosis, institutional experience, and etiology. Intraoperative mortality with emergency intervention is higher compared to spontaneous dissection, mainly due to delayed diagnosis and comorbidities. However, studies have found that early repair by experienced aortic teams has acceptable outcomes [26]. Postoperative morbidity may be a stroke, renal failure, bleeding, or recurrent dissection, but improvement in cerebral perfusion and myocardial protection has enhanced survival [27]. Despite these advances, the absence of a standardized protocol and severe heterogeneity of patient populations necessitate individualized surgical strategies to optimize outcomes in Table/Fig 4.

Table/Fig 4 Open Surgical Repair for Introgenic Type A Aortic Dissection (iTAAD): Indications, Techniques, and Outcomes [24-27].

Author et	Indications for	Surgical	Hemiarch vs.	Clinical	Individualized
al.	Open Surgical	Techniques and	Total Arch	Outcomes and	Surgical
	Repair	Goals	Replacement	Complications	Strategies
Hong et al.	Standard for	Emphasizes rapid	Advocates	Low mortality with	Tailored to
[24].	hemodynamic	cannulation,	hemiarch unless	experience;	anatomy, timing,
	instability, root	hypothermic	arch tear	neurological	patient status
	involvement, or	arrest, and	mandates total	events and	
	retrograde	root/hemiarch	replacement	bleeding noted	
	extension	repair			
Eranki et	Performed in all	Describes	Hemiarch	Quality of life is	Stresses patient-
al. [25].	acute	conventional	preferred to	generally	centered approach
	presentations;	sternotomy, graft	reduce the	favorable;	and surgical
	focus on survival	replacement with	operative burden	survivors face	judgment
	improvement	cerebral protection		chronic pain and	
				anxiety.	
Hameed et	Primary treatment	Focus on proximal	Brief mention:	Early intervention	Supports
al. [26].	when dissection	aortic repair and	approach	improves	anatomy-based
	threatens aortic	minimizing	individualized	outcomes;	decisions
	rupture or	ischemia		mortality remains	
	malperfusion			high if delayed	
Benedetto	National audit:	Highlights	Total arch is more	National data show	Data support risk-
et al. [27].	repair indicated in	institutional	common in high-	17% mortality;	based
	nearly all Type A	variability;	volume centers;	stroke and	stratification for
	cases with	median	hemiarch is still	reintervention rates	procedure type
	significant	sternotomy and	predominant.	are significant.	and extent
	complications	ascending aorta			
		grafting common.			

Legend: Brief table of open surgical methods for iTAAD, including indications, technique, and patient-specific strategy modulation from four reference articles.

New Endovascular Interventions: Feasibility, Case Uses, and Limitations

2024; Vol 13: Issue 8 Open Access

Endovascular repair of iatrogenic Type A aortic dissection (iTAAD) is increasingly popular as a rescue strategy in patients not candidates for open repair due to age, comorbidities, or previous sternotomies. While the ascending aorta contains inherent anatomic difficulties such as proximity to coronary ostia and dynamic motion, new technology has improved endovascular repair [28]. Custom stent grafts, branched stent grafts, and rapid-deployment systems have been selectively applied to seal the entry tear and restore proper lumen perfusion without cardiopulmonary bypass. In hybrid procedures, supra-aortic vessel debranching can be achieved by open technique followed by stent-graft placement, striking a balance between invasiveness and efficacy [29].

Small series and case reports have reported technical success with endovascular repair, particularly in delayed or retrograde dissections following TEVAR or TAVR. These approaches are typically reserved in hemodynamically stable patients with imaging confirmation of suitable landing zones. Limitations remain. Availability of devices, the lack of off-the-shelf devices, and the risk of endoleaks or incomplete coverage restrict more extensive use [30]. Furthermore, the pulsatility and curvature of the ascending aorta demand careful deployment, which is complicated with the current stent designs. Long-term outcomes are largely unreported, and procedural success is center-dependent. Despite this, ongoing trials and device development foretell an increasing role for endovascular repair in carefully selected cases of iTAAD as procedural refinement and imaging guidance improve [31].

Comparative Outcomes: Mortality, Complications, and Procedural Timing in iTAAD

The clinical picture of iatrogenic Type A aortic dissection (iTAAD) is highly variable in terms of management approach and the timing of diagnosis. Open repair, with its attendant high perioperative complication rate, is the strongest established therapy, particularly in the context of acute presentation with hemodynamic instability [32]. In-hospital mortality following surgical repair for iTAAD has ranged between 20% and 40%, usually secondary to patient comorbidities, a delay in diagnosis, and dissection severity. Stroke, bleeding, renal failure, and prolonged mechanical ventilation are the most common complications. Despite such complications, surgical repair has been shown to have long-term outcomes, especially in centers of excellence and by early intervention approaches [33].

Endovascular repair, being less invasive, is generally reserved for highly selected, anatomically favorable cases with delayed or retrograde patterns of dissection. Initial experience reports lowering perioperative morbidity and hastened recovery, but stent migration and risk of incomplete exclusion of the entry tear and long-term durability are concerns. Reintervention rates following endovascular therapy are uncertain and generally based on procedure and patient-related factors [34]. Presentation timing is a crucial determinant in both modalities; delayed presentation, particularly in non-tertiary referral centers, is associated with poorer outcomes due to irreversible end-organ damage. Comparative data for endovascular versus surgical repair are presently limited to case series and retrospective reports, with no randomized trial. Improvement in imaging, patient selection, and individualized therapeutic planning is increasingly improving survival rates and reducing complications in this high-risk patient population [35].

Evidence Gaps and Future iTAAD Management Research Directions

Despite greater awareness and case-based experience, the management of iatrogenic Type A aortic dissection (iTAAD) remains underreported in clinical literature. Most existing literature comprises retrospective case series, single-institution reports, or individual case presentations that preclude generalizability [36]. No standardized definition, reporting standard, or long-term followup data exist, precluding study-to-study direct comparison. Most large-scale studies of aortic dissection fail to also stratify by spontaneous and iatrogenic causes, obscuring iTAAD-specific presentation

2024; Vol 13: Issue 8 Open Access

patterns, risk factors, and outcomes [37]. The absence of stratified data precludes the creation of predictive models and individualized management algorithms. Prospective multicenter registries dedicated solely to iTAAD will be needed to identify early warning signs of injury, procedural considerations, and treatment outcomes in varied clinical environments. Another immediate need is the performance of focused clinical trials to compare open and endovascular repair in anatomically suitable patients. Technological advancement must develop stent-grafts explicitly designed for the ascending aorta with greater flexibility, accurate deployment, and adaptability to accommodate varied aortic diameters [38]. Exploration of intraoperative imaging modalities and real-time diagnostic options may also enable earlier detection and avoidance of iatrogenic injury. Interdisciplinary cooperation between cardiac surgeons, interventional cardiologists, imaging professionals, and device makers will be necessary to push the field forward. Lastly, remodeling the current reactive treatment paradigm to a proactive and precision-based one will dramatically enhance patient outcomes and decrease iTAAD-related mortality [39].

Discussion

Iatrogenic Type A aortic dissection (iTAAD) is a comparatively rare but catastrophic complication, increasingly seen in today's cardiovascular practice with the increase in the use of surgical and catheter-based interventions. While its frequency is still low compared with spontaneous dissection, mortality and morbidity in iTAAD are disproportionate [40]. This is primarily because of its sudden presentation, diagnostic complexity, and the fragile anatomical site of the ascending aorta, which tolerates little procedural error. Thus, iTAAD requires increased procedural care, prompt identification, and appropriate intervention strategies that are quite different between surgical and endovascular specialties [41].

Surgical aortic manipulation, particularly with cannulation, cross-clamping, or proximal anastomosis, remains the most frequent etiology of iTAAD. Such mechanical injury is generally compounded in atherosclerotic, dilated, or connective tissue—injured aortas [42]. Similarly, catheter interventions such as PCI, TAVR, and TEVAR risk by wire passage, balloon dilatation, or device deployment, particularly in intimal damage or friability. Spontaneous dissections are preceded by long-standing medial degeneration. At the same time, iTAAD is characterized by acute mechanical disruption in a localized area of vascular tissue, and therefore its clinical course is acute and unpredictable [43].

Diagnosis of iTAAD is difficult, especially in the perioperative or postoperative period when patients are sedated, intubated, or have nonspecific signs of deterioration. Imaging is then the most critical. CT angiography is still the gold standard diagnostic imaging because it can clearly visualize dissection flaps, entry points, and branch involvement [44]. Intraoperative transesophageal echocardiography (TEE) is, however, optimal for real-time detection, especially during the high-risk maneuvers of cannulation and decannulation. Using these modalities simultaneously ensures early detection, which is important because delayed diagnosis is directly proportional to mortality [45].

Surgical repair has been the standard management of iTAAD and continues to be the modality of choice in most institutions. The extent of surgical intervention depends on the site of the entry tear, patient stability, and institutional preference. Hemiarch replacement is a common strategy in localized dissections, with total arch procedures reserved for dissections to the distal or major branches [46]. While generally satisfactory in high-volume institutions, surgical outcomes are still laden with high risk. Postoperative complications like neurological injury, hemorrhage, and multiorgan failure are not uncommon, especially with emergent presentations or patients with a delayed onset of symptoms. However, surgery allows for definitive management through resectioning the dissection flap and aortic anatomy restoration, except for rupture and malperfusion [47].

The decade has seen increasing interest in endovascular approaches as a less invasive option than open surgery. Though the curvature, motion, and proximity of the ascending aorta to critical structures present intimidating challenges, there have been encouraging results in selected patients from several case reports and small series. Endovascular stent-grafts, especially customized or branched stent-grafts, have been employed in managing retrograde dissections or delayed iTAAD in stable patients [48]. Hybrid approaches consisting of surgical debranching head vessels followed by stent

Open Access

implantation have also been described, providing an intermediate solution for high-risk surgical candidates but not candidates for complete endovascular repair. However, this is still limited by the availability of devices, anatomical limitations, and the absence of long-term durability data. The current consensus is, therefore, in favor of endovascular treatment only in high-technology centers with favorable anatomy [49].

Comparison of endovascular and surgical outcomes remains challenging because of heterogeneity in the repair timing, patient selection, and study design. Surgical repair is typically associated with elevated initial mortality from the acuity of presentation and complexity of repair but with generally more robust long-term outcomes [50]. The endovascular repair can offer short-term benefits in recovery and invasiveness of the procedure but is also associated with risks of incomplete coverage of the tear, endoleak, or reintervention. Mortality rates for iTAAD are typically higher than for spontaneous dissections, which represents the unique clinical conundrum that it is. Complication rates, particularly stroke and renal impairment, are high and are typically confounded by procedural delay or attendant comorbidities [51].

One of the most important issues emerging from the literature is the underrepresentation of iTAAD in large-scale dissection databases and clinical trials. Most studies aim at spontaneous dissections; iatrogenic ones are excluded or not reported separately. This precludes the derivation of iTAAD-specific data on risk stratification, optimal treatment algorithms, or prognostic indicators [52]. In addition, owing to its rarity, most of the data are retrospective reviews or single-center experiences, precluding generalizability. These gaps in evidence produce uncertainty in clinical decision-making, especially in determining the feasibility of newer, minimally invasive techniques [53].

In the future, there is an urgent need for prospective multicenter registries of iTAAD. These would allow standardized reporting of mechanisms, imaging, intraoperative factors, and postoperative outcomes to provide a stronger evidence base. Importantly, innovation in device design is also needed. Existing stent-grafts are not necessarily optimal for the usual geometry and hemodynamics of the ascending aorta [54]. The design of purpose-built ascending aortic devices that are flexible, adaptive, and compatible with the high-pressure environment is needed to allow safe and effective endovascular repair. Artificial intelligence in imaging may also enable earlier detection and risk prediction on procedures. Also, simulation-based training and real-time navigation technologies may decrease operator-dependent iatrogenic risk [55].

Conclusion

Iatrogenic Type A aortic dissection (iTAAD) is an emergent and uncommon complication of cardiovascular surgery, necessitating early diagnosis and careful treatment. Open repair is still the gold standard of therapy, particularly in hemodynamically unstable patients, but emerging endovascular techniques have the potential for judiciously selected anatomy and patient profiles. Diagnostic experience with CTA and intraoperative TEE imaging modalities is essential in early management. Individualized clinical decision-making is the standard in the dearth of large-scale stratified data. Innovation in the future will have to meet the challenge of the design of purpose-specific endovascular devices, multicenter registry extensions, and standardized protocols to improve outcomes. Multidisciplinary coordination and cooperation between surgeons, interventionalists, and imaging experts will be paramount in optimizing treatment pathways and expanding therapeutic opportunities in this high-risk population of patients.

Key Takeaways

iTAAD is a highly lethal condition requiring urgent diagnosis and tailored treatment. Surgical repair remains the standard, and endovascular therapy is in progress. Imaging is central to early detection and procedural safety. Despite promising innovations, management is hindered by a lack of information and consensus on guidelines. Outcomes will depend on dedicated research, specialist device innovation, and coordinated, multidisciplinary care pathways within cardiac and vascular specialties. Proactive, evidence-based, and patient-tailored approaches will be required to reduce mortality and procedural risk.

Ethical Consideration

This article reviews previously published literature and does not involve original research involving human participants

2024; Vol 13: Issue 8

Open Access

or animals. Ethical approval was thus not required. Sources have been correctly cited according to academic convention.

Acknowledgment

The author thanks the institutional library resources and available public databases that enabled the compilation and evaluation of relevant literature. Thanks to the clinical preceptors and cardiothoracic surgery department faculty for suggestions for narrowing the scope and direction of this Review.

Conflict of Interest

The author has no conflict of interest with the publication or content of this manuscript.

Financing

Neither funds nor external support was given to prepare, conduct research, or author this Review.

Reference

- 1. **Masuda Y, Yamada Z, Morooka N, Watanabe S, Inagaki Y.** Prognosis of patients with medically treated aortic dissections. *Circulation*. 1991;84(Suppl III):III7–III13.
- 2. Evangelista A, Isselbacher EM, Bossone E, Gleason TG, De Eusanio M, Sechtem U, et al. Insights from the International Registry of Acute Aortic Dissection: a 20-year experience of collaborative clinical research. *Circulation*. 2018;137(17):1846–60.
- 3. **Appoo JJ, Pozeg Z.** Strategies in the surgical treatment of Type A aortic arch dissection. *Ann Cardiothorac Surg.* 2013;2(2):205–11.
- 4. **Grabenwoger M, Weiss G.** Type A aortic dissection: the extent of surgical intervention. *Ann Cardiothorac Surg.* 2013;2(2):212–5.
- 5. **Bonser RS, Ranasinghe AM, Loubani M, Evans JD, Thalji NM, Bachet JE, et al.** Evidence, lack of evidence, controversy, and debate in the provision and performance of the acute Type A aortic dissection surgery. *J Am Coll Cardiol.* 2011;58(24):2455–74.
- 6. **Uimonen M, Olsson C, Jeppsson A, Geirsson A, Chemtob R, Khalil A, et al.** Outcome after surgery for acute Type A aortic dissection with or without primary tear resection. *Ann Thorac Surg.* 2022;114(2):492–501.
- 7. **Lee CH, Cho JW, Jang JS, Yoon TH.** Surgical outcomes of Type A aortic dissection at a small-volume medical center: analysis according to the extent of surgery. *Korean J Thorac Cardiovasc Surg.* 2020;53(2):58–63.
- 8. **Akowuah EF, Maier RH, Hancock HC, et al.** Minithoracotomy vs conventional sternotomy for mitral valve repair: a randomized clinical trial. *JAMA*. 2023;329:1957–66.
- 9. **Beckmann A, Meyer R, Eberhardt J, et al.** German Heart Surgery Report 2023: the annual updated German Society for Thoracic and Cardiovascular Surgery registry. *Thorac Cardiovasc Surg.* 2024;72:329–45.
- 10. Biancari F, Fileccia D, Ferrante L, Mäkikallio T, Juvonen T, Jormalainen M, et al. The extent of surgical repair and outcomes after Type A aortic dissection surgery. *BJS Open.* 2025;9(2):zraf003. https://doi.org/10.1093/bjsopen/zraf003
- 11. Bauer SJ, Sugimura Y, Schoettler FI, Immohr MB, Suzuki T, Mehdiani A, et al. Iatrogenic aortic dissection in minimally invasive cardiac surgery for atrioventricular valves and atrial structures. *Eur J Cardiothorac Surg*. 2025;67(6):ezaf135. https://doi.org/10.1093/ejcts/ezaf135
- 12. Manan HA, Khan M, Rafiq M. Iatrogenic Type A Aortic Dissection Following Percutaneous Coronary Intervention. *Cureus*. 2024;16(11):e73884. https://doi.org/10.7759/cureus.73884
- 13. Carrel T, Sundt TM, von Kodolitsch Y, Czerny M. Acute aortic dissection. *Lancet.* 2023;401(10378):773–88. https://doi.org/10.1016/S0140-6736(22)02492-6
- 14. Pitts L, Montagner M, Kofler M, Van Praet KM, Heck R, Buz S, et al. State of the art review: surgical treatment of acute Type A aortic dissection. *Surg Technol Int.* 2021;38:279–88. https://www.researchgate.net/publication/350707080

2024; Vol 13: Issue 8

Open Access

- 15. Ali-Hasan-Al-Saegh S, Halloum N, Scali S, Kriege M, Abualia M, Stamenovic D, et al. A systematic review and meta-analysis of retrograde Type A aortic dissection after thoracic endovascular aortic repair in patients with type B aortic dissection. *Medicine (Baltimore)*. 2023;102(15):e32944. https://doi.org/10.1097/MD.0000000000032944
- 16. Klaudel J, Glaza M, Klaudel B, Trenkner W, Pawłowski K, Szołkiewicz M. Catheter-induced coronary artery and aortic dissections: A study of mechanisms, risk factors, and propagation causes. *Cardiol J.* 2024;31(3):398–408.
- 17. Al-Gburi AJ. Iatrogenic aortic dissection: A review. *Med J Babylon*. 2022;19(2):129–132. https://doi.org/10.4103/MJBL.MJBL_60_22
- 18. Safdar A, Young L, Khatri J. Management of iatrogenic ascending aortic dissection after percutaneous intervention of chronic total occlusion. *Catheter Cardiovasc Interv.* 2024;104(7):1442–1446. https://doi.org/10.1002/ccd.31070
- 19. Murillo H, Molvin L, Chin AS, Fleischmann D. Aortic dissection and other acute aortic syndromes: Diagnostic imaging findings from acute to chronic longitudinal progression. *Radiographics*. 2021;41(2):425–446. https://doi.org/10.1148/rg.2021200138
- 20. Acharya M, Mariscalco G. Diagnosis and acute management of Type A aortic dissection. *Br J Cardiol*. 2023;30(2):12.
- 21. Cox K, Sundaram RD, Popescu M, Pillai K, Kermali M, Harky A, et al. A review on the deeper understanding of inflammation and infection of the thoracic aorta. *Vasc.* 2023;31(2):257–265. https://doi.org/10.1177/17085381211060928
- 22. Gudbjartsson T, Ahlsson A, Geirsson A, Gunn J, Hjortdal V, Jeppsson A, et al. Acute Type A aortic dissection a review. *Scand Cardiovasc J.* 2020;54(1):1–3.
- 23. Ciccone MM, Dentamaro I, Masi F, Carbonara S, Ricci G, et al. Advances in the diagnosis of acute aortic syndromes: Role of imaging techniques. *Vasc Med.* 2016;21(3):239–250. https://doi.org/10.1177/1358863X16631419
- 24. Hong JC, Coselli JS. Open repair remains the gold standard. *JTCVS Tech.* 2021;10:16. https://doi.org/10.1016/j.xjtc.2021.01.009
- 25. Eranki A, Wilson-Smith A, Williams ML, Saxena A, Mejia R. Quality of life following surgical repair of acute Type A aortic dissection: a systematic review. *J Cardiothorac Surg.* 2022;17(1):118. https://doi.org/10.1186/s13019-022-01875-x
- 26. Hameed I, Cifu AS, Vallabhajosyula P. Management of thoracic aortic dissection. *JAMA*. 2023;329(9):756–757. https://doi.org/10.1001/jama.2023.0265
- 27. Benedetto U, Dimagli A, Kaura A, Sinha S, Mariscalco G, Krasopoulos G, et al. Determinants of outcomes following surgery for Type A acute aortic dissection: the UK National Adult Cardiac Surgical Audit. *Eur Heart J*. 2022;43(1):44–52. https://doi.org/10.1093/eurheartj/ehab586
- 28. **Doenst T, Diab M, Sponholz C, et al.** The opportunities and limitations of minimally invasive cardiac surgery. *Dtsch Arztebl Int.* 2017;114:777–84.
- 29. Williams ML, Sheng S, Gammie JS, et al. Aortic dissection as a complication of cardiac surgery: report from the Society of Thoracic Surgeons database. *Ann Thorac Surg.* 2010;90:1812–6; discussion 1816–7.
- 30. **Minol JP, Dimitrova V, Petrov G, et al.** Predictive value of body mass index in minimally invasive mitral valve surgery. *Thorac Cardiovasc Surg.* 2022;70:106–11.
- 31. **Sugimura Y, Katahira S, Rellecke P, et al.** The analysis of left ventricular ejection fraction after minimally invasive surgery for primary mitral valve regurgitation. *J Card Surg.* 2021;36:661–9.
- 32. **Minol JP, Dimitrova V, Petrov G, et al.** The age-adjusted Charlson comorbidity index in minimally invasive mitral valve surgery. *Eur J Cardiothorac Surg.* 2019;56:1124–30.
- 33. **Elefteriades JA, Zafar MA, Ziganshin BA.** Iatrogenic aortic dissection: Review of the literature. *Aorta (Stamford)*. 2016;4(6):240–3. https://doi.org/10.12945/j.aorta.2016.16.081

2024; Vol 13: Issue 8 Open Access

34. **Sayed A, Munir M, Bahbah EI.** Aortic dissection: a review of the pathophysiology, management and prospective advances. *Curr Cardiol Rev.* 2021;17:e230421186875. https://doi.org/10.2174/1573403X16666201014142930

- 35. **Li JC, Guan XL, Gong M, Zhang HJ.** Iatrogenic aortic dissection during percutaneous coronary intervention: a case report and Review of the literature. *J Int Med Res.* 2018;46(2):526–32. https://doi.org/10.1177/0300060517716342
- 36. **Krüger T, Conzelmann LO, Bonser RS, et al.** Acute aortic dissection type A. *Br J Surg.* 2012;99:1331–44. https://doi.org/10.1002/bjs.8840
- 37. **Noguchi K, Hori D, Nomura Y, Tanaka H.** Iatrogenic acute aortic dissection during percutaneous coronary intervention for acute myocardial infarction. *Ann Vasc Dis.* 2012;5(1):78–81. https://doi.org/10.3400/avd.cr.11.00057
- 38. **Larson EW, Edwards WD.** Risk factors for aortic dissection: a necropsy study of 161 cases. *Am J Cardiol*. 1984;53(6):849–55. https://doi.org/10.1016/0002-9149(84)90418-1
- 39. **Godwin JD, Herfkens RL, Skiöldebrand CG, Federle MP, Lipton MJ.** Evaluation of dissections and aneurysms of the thoracic aorta by conventional and dynamic CT scanning. *Radiology*. 1980;136(1):125–33. https://doi.org/10.1148/radiology.136.1.7384486
- 40. Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. *Eur Heart J*. 2014;35(41):2873–926.
- 41. Svensson LG, Labib SB, Eisenhauer AC, Butterly JR. Intimal tear without hematoma: an important variant of aortic dissection that can elude current imaging techniques. *Circulation*. 1999;99(10):1331–6.
- 42. Kaji S, Akasaka T, Katayama M, et al. Prognosis of retrograde dissection from the descending to the ascending aorta. *Circulation*. 2003;108 Suppl 1:II300–6.
- 43. Mészáros I, Mórocz J, Szlávi J, et al. Epidemiology and clinicopathology of aortic dissection: a population-based longitudinal study over 27 years. *Chest.* 2000;117(5):1271–8.
- 44. Howard DP, Banerjee A, Fairhead JF, et al. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. *Circulation*. 2013;127(20):2031–7.
- 45. Kurz SD, Falk V, Kempfert J, et al. Insight into the incidence of acute aortic dissection in the German region of Berlin and Brandenburg. *Int J Cardiol*. 2017;241:326–9.
- 46. Olsson C, Thelin S, Ståhle E, et al. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. *Circulation*. 2006;114(24):2611–8.
- 47. Wundram M, Falk V, Di Eusanio M, et al. Clinical presentation, management, and short-term outcome of patients with Type A acute dissection complicated by mesenteric malperfusion: observations from the International Registry of Acute Aortic Dissection. *J Thorac Cardiovasc Surg.* 2013;145:385–92.e1.
- 48. Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. *JAMA*. 2000;283(7):897–903.
- 49. Huynh N, Thordsen S, Thomas T, et al. Clinical and pathologic findings of aortic dissection at autopsy: Review of 336 cases over nearly 6 decades. *Am Heart J.* 2019;209:108–15.
- 50. Howard DP, Sideso E, Handa A, et al. Incidence, risk factors, outcome and projected future burden of acute aortic dissection. *Ann Cardiothorac Surg.* 2014;3(3):278–84.
- 51. Klaudel J, Trenkner W, Glaza M, et al. Analysis of reported cases of left main coronary artery injury during catheter ablation: In search of a pattern. *J Cardiovasc Electrophysiol*. 2019;30(3):410–26. https://doi.org/10.1111/jce.13833

Open Access

- 52. Eshtehardi P, Adorjan P, Togni M, et al. Iatrogenic left main coronary artery dissection: incidence, classification, management, and long-term follow-up. *Am Heart J.* 2010;159(6):1147–53. https://doi.org/10.1016/j.ahj.2010.03.012
- 53. Cheng CI, Wu CJ, Hsieh YK, et al. Percutaneous coronary intervention for iatrogenic left main coronary artery dissection. *Int J Cardiol.* 2008;126(2):177–82. https://doi.org/10.1016/j.ijcard.2007.03.125
- 54. Núñez-Gil IJ, Bautista D, Cerrato E, et al. Incidence, management, and immediate- and long-term outcomes after iatrogenic aortic dissection during diagnostic or interventional coronary procedures. *Circulation*. 2015;131(24):2114–9. https://doi.org/10.1161/CIRCULATIONAHA.115.015334
- 55. Gómez-Moreno S, Sabaté M, Jiménez-Quevedo P, et al. Iatrogenic dissection of the ascending aorta following heart catheterisation: incidence, management and outcome. *EuroIntervention*. 2006;2(2):197–202.