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Abstract: 
Accurate prediction of household energy consumption is vital for the efficient operation of smart energy systems, 
enabling demand-side management, cost optimization, and grid stability. This paper presents an efficient deep learning-
based approach for forecasting household energy load by leveraging the temporal and nonlinear patterns inherent in 
smart meter data. The proposed framework incorporates advanced deep learning architectures such as Long Short-Term 
Memory (LSTM) and Convolutional Neural Networks (CNN) to model short-term and long-term dependencies in energy 
usage. Key external factors including weather conditions, time of day, and occupancy patterns are integrated to enhance 
prediction accuracy. The model is trained and evaluated using real-world datasets, with performance measured against 
traditional and machine learning baselines. Results demonstrate significant improvements in forecast accuracy and 
computational efficiency, making the approach highly suitable for real-time smart home energy management 
applications. This research contributes toward intelligent energy systems by supporting proactive load balancing and 
sustainable energy consumption. 
Keywords: CNN, LSTM, Energy Forecasting, Deep Learning, GRU  
INTRODUCTION 
The rapid pace of urbanization and the growing proliferation of electrical and electronic devices in households have 
significantly increased residential energy consumption across the globe. Modern lifestyles, characterized by high 
dependence on appliances, smart devices, and comfort technologies, have transformed homes into complex energy-
consuming units. This rising demand poses considerable challenges to existing power grids, particularly in terms of load 
balancing, energy efficiency, and system reliability. With the global emphasis on sustainability and the transition toward 
intelligent infrastructure, the need for smarter energy management in households has become more pressing than ever 
[11]. 
One of the critical components of smart energy systems is the ability to accurately forecast energy load at the household 
level. Effective load prediction not only helps energy providers maintain grid stability and optimize supply but also 
enables consumers to manage their energy usage more efficiently, potentially reducing costs and carbon footprints. 
Traditional forecasting methods, such as statistical models and conventional machine learning algorithms, often struggle 
to capture the highly dynamic and nonlinear nature of energy consumption patterns. Factors such as varying occupant 
behavior, fluctuating weather conditions, and the integration of renewable energy sources introduce complexity that these 
models are not equipped to handle effectively [12]. 
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In this context, deep learning has emerged as a promising solution due to its ability to model intricate patterns and 
dependencies in large-scale, time-series data. Deep learning architectures [13-16], such as Long Short-Term Memory 
(LSTM), Gated Recurrent Units (GRUs), and Convolutional Neural Networks (CNNs), have shown remarkable success 
in various domains involving sequential data, including speech recognition, financial forecasting, and healthcare 
analytics. Applied to energy systems, these models can learn from historical consumption data and relevant contextual 
information—such as temperature, humidity, time of day, and day of the week—to make highly accurate predictions of 
future energy usage. 
This paper proposes an efficient deep learning-based approach for predicting household energy load, with the goal of 
enhancing the performance of smart energy management systems. By incorporating temporal dependencies and external 
influencing factors, the proposed framework aims to deliver robust, scalable, and real-time energy forecasts. This work 
contributes to the growing body of research at the intersection of artificial intelligence and sustainable energy, offering 
practical insights for both energy providers and end-users in managing energy demand proactively. 
REVIEW OF LITERATURE 
In recent years, the importance of accurate energy load forecasting has increased significantly due to the rise of smart 
grids and smart home technologies. Traditional statistical models such as Autoregressive Integrated Moving Average 
(ARIMA) and Exponential Smoothing have been widely used for load forecasting, but they often fail to capture the 
nonlinear and dynamic characteristics of household energy consumption. As a result, the focus has shifted toward 
machine learning and deep learning approaches, which offer improved prediction accuracy by learning complex patterns 
in data. 
Table 1: Review of literature for deep learning based smart energy forecasting 

Ref. No Method Used Dataset/Case Key Findings 
[1] ANN-based 

Forecasting 
Building energy 
datasets 

ANN outperforms traditional models 
in capturing nonlinear energy 
patterns. 

[2] ML-based Peak Load 
Forecasting 

Smart meter data Machine learning enhances peak load 
prediction using appliance-level data. 

[3] LSTM for Load 
Forecasting 

UCI Residential 
Dataset 

LSTM performs well in modeling 
long-term dependencies in energy 
usage. 

[4] CNN-LSTM Hybrid 
Model 

Australian Smart 
Home Dataset 

CNN-LSTM improves accuracy by 
learning spatial-temporal features. 

[5] Deep Belief Network 
(DBN) 

Turkish Residential 
Load Data 

DBN delivers better performance than 
shallow models in short-term 
forecasting. 

[6] Transformer Model Chinese Smart Meter 
Data 

Transformer shows high accuracy 
with attention mechanism for 
sequence modeling. 

[7] RNN-based 
Forecasting 

UK Domestic Energy 
Dataset 

RNN handles time-dependent 
variability but needs careful tuning. 

[8] GRU Neural Network Korean Household 
Dataset 

GRU offers faster convergence and 
better accuracy than basic RNNs. 

[9] Hybrid DL with 
Weather Features 

Pakistan Residential 
Load Data 

Weather integration significantly 
boosts prediction accuracy. 
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[10] Multi-Scale CNN-
LSTM Model 

OpenEI Smart Grid 
Dataset 

Multi-scale modeling enhances 
feature extraction for more precise 
forecasting. 

 
DATA ACQUISITION & PREPROCESSING 
The foundation of an effective deep learning model for household energy load prediction lies in the quality and variety 
of input data. In this study, data is primarily acquired from smart meters installed in residential homes, capturing hourly 
or daily energy consumption patterns. These time-stamped readings provide a rich source of sequential data for 
forecasting purposes. Additionally, external data sources such as weather APIs are integrated to capture environmental 
influences, including temperature, humidity, wind speed, and solar irradiance, which can significantly affect household 
energy usage. Occupancy logs, which track the presence or absence of residents, are also considered as they influence 
appliance usage behavior. Furthermore, calendar-based features like weekends, holidays, and seasonal variations are 
included to enrich the dataset and improve model accuracy. 
Once the data is collected, it undergoes a comprehensive preprocessing phase to ensure quality and suitability for deep 
learning models. The first step involves handling missing values and removing or correcting outliers that may arise from 
sensor malfunctions or data logging errors. Following this, normalization or standardization techniques are applied to 
bring features to a common scale, improving model convergence and stability. Time-series formatting is then performed 
using sliding windows or sequence modeling techniques to convert the data into an appropriate format for training 
recurrent or hybrid neural networks. Additionally, feature engineering is employed to derive meaningful attributes such 
as time-of-day, day-of-week, temperature ranges, and occupancy states, which help the model learn more nuanced 
patterns in energy consumption behavior. These preprocessing steps are critical for enhancing the predictive performance 
and robustness of the proposed deep learning framework. 
PROPOSED MODEL 
The architecture of the proposed Deep Learning Based Load Prediction Framework is designed to capture both spatial 
and temporal dependencies in household energy consumption data. At the input layer, the model ingests multivariate 
time series data, which includes historical energy usage along with contextual features such as temperature, humidity, 
time-of-day, and day-of-week. The first stage of the model employs Convolutional Neural Networks (CNNs) to extract 
high-level abstract features from the input data. CNNs are particularly effective at identifying localized patterns and 
trends in energy usage over time, such as repetitive daily or weekly consumption cycles. By applying multiple 
convolutional and pooling layers, the model condenses and transforms raw input data into meaningful feature 
representations, reducing noise and dimensionality before it is passed to the temporal modeling layer. 
Following feature extraction, the model utilizes Gated Recurrent Units (GRUs)—a variant of recurrent neural networks 
known for their efficiency and ability to handle long-term dependencies in sequential data. GRUs are well-suited for 
time series forecasting because they dynamically retain or forget past information through gated mechanisms, allowing 
the network to adapt to the varying nature of household energy usage. This combination of CNN and GRU enables the 
model to learn both short-term fluctuations and long-term patterns in energy demand. Finally, the output layer generates 
the predicted energy load for the next time step(s), enabling real-time or day-ahead forecasting. The architecture is trained 
using backpropagation through time, optimized with loss functions such as Mean Squared Error (MSE), and fine-tuned 
using hyperparameter tuning techniques. This hybrid approach enhances the model’s accuracy, generalizability, and 
responsiveness in smart energy systems. 
Table 2: Proposed deep learning-based model summary 

Layer (Type) Output Shape Number of Parameters 
CONV_Layer1 (Conv2D) (None, None, 6, 64) 192 
Pooling Layer (MaxPooling) (None, None, 3, 64) 0 
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CONV_Layer2 (Conv2D) (None, None, 2, 64) 8,256 
Pooling Layer (MaxPooling) (None, None, 1, 64) 0 
Flatten Layer (None, None, 64) 0 
GRU_1 (None, None, 64) 24,960 
GRU_2 (None, None, 32) 9,408 
GRU_3 (None, 16) 2,400 
Dropout (None, 16) 0 
Fully Connected Layer (Dense) (None, 128) 2,176 
Output Layer (Dense) (None, 1) 129 

The proposed model adopts a hybrid architecture that integrates Convolutional Neural Networks (CNNs) and Gated 
Recurrent Units (GRUs) to effectively forecast household energy consumption. It begins with two convolutional layers 
(CONV_Layer1 and CONV_Layer2) that extract spatial and localized temporal features from multivariate input 
sequences, followed by max-pooling layers to reduce dimensionality and enhance feature generalization. These layers 
are succeeded by a flattening operation that reshapes the output into a suitable format for sequential modeling. The GRU 
component consists of three stacked GRU layers that capture short- and long-term dependencies in energy usage patterns, 
enabling the model to learn complex temporal correlations. A dropout layer is included after the GRUs to prevent 
overfitting by randomly omitting units during training. The final section of the model includes a fully connected dense 
layer with 128 neurons that aggregates the learned features, followed by an output layer with a single neuron to generate 
the final energy load prediction. This architecture comprises approximately 56,521 trainable parameters, strategically 
distributed to balance model complexity and prediction accuracy, making it highly effective for smart energy 
management in residential environments. 
RESULT AND ANALISIS 
The experimental setup for this study utilized a system equipped with an Intel Core i7-10750H processor, 16 GB DDR4 
RAM, and a 64-bit operating system, implemented in a Python environment. The dataset was divided into 80% for 
training and 20% for testing, and the model was developed using the open-source deep learning libraries Keras (v2.9.0) 
and TensorFlow (v2.9.1). The proposed hybrid model, which combines Convolutional Neural Networks (CNNs) with 
Gated Recurrent Units (GRUs), was applied to a real-world dataset consisting of minute-level observations from a single 
household. For effective training and evaluation, the data was aggregated on daily and weekly levels. Model performance 
was assessed using four key time series forecasting metrics: Mean Squared Error (MSE), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). To validate the effectiveness of 
the proposed architecture, it was benchmarked against several baseline models including Linear Regression (LR), LSTM, 
Enhanced LSTM (E-LSTM), CNN-LSTM, Bi-LSTM, Stacked-LSTM, and Stacked Bi-LSTM. Further experiments 
tested the model's robustness by incorporating and then removing external contextual features like weather data and 
holiday information to analyze their impact on performance. The results, summarized in Table 3, confirm the superiority 
and reliability of the proposed model for household energy load forecasting. 
Table 3: Performance evaluation of proposed deep learning-based approach 

Model MAE RMSE MSE MAPE 
Linear 
Regression 

0.390 0.501 0.251 52.10 

LSTM 0.410 0.489 0.239 38.50 
CNN-LSTM 0.188 0.252 0.063 18.90 
Proposed Model 0.176 0.238 0.056 17.85 

The results presented in the table demonstrate a clear performance hierarchy among the evaluated models, with the 
proposed hybrid deep learning model outperforming all others across the key forecasting metrics: MAE (Mean Absolute 
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Error), RMSE (Root Mean Square Error), MSE (Mean Squared Error), and MAPE (Mean Absolute Percentage Error). 
Traditional approaches like Linear Regression and standalone LSTM models exhibit higher error rates, indicating their 
limited capability to capture the complex, nonlinear, and temporal patterns in household energy consumption. 
Specifically, Linear Regression shows the highest MAPE of 52.10%, followed by LSTM at 38.50%, revealing their 
relatively poor accuracy in forecasting energy loads. The CNN-LSTM model performs significantly better, reducing 
MAE and MAPE to 0.188 and 18.90% respectively, showcasing the advantage of combining convolutional layers with 
recurrent units. 
The proposed model, which integrates Convolutional Neural Networks (CNN) with Stacked Gated Recurrent Units 
(GRUs), achieves the best overall performance with the lowest MAE of 0.176, RMSE of 0.238, MSE of 0.056, and 
MAPE of 17.85%. These improvements highlight the effectiveness of the model in capturing both spatial and temporal 
dependencies in energy usage data. The CNN layers extract local and periodic patterns from the input sequences, while 
the GRUs model long-term dependencies, enabling more precise forecasts. Additionally, incorporating external 
contextual data such as weather and calendar events contributes to improved prediction accuracy. The results underscore 
the robustness and efficiency of the proposed model, making it a strong candidate for real-time deployment in smart 
energy management systems. 

Figure 1: MAE comparison of proposed model with existing 
The Mean Absolute Error (MAE) values in the table clearly highlight the superior performance of the proposed model 
in forecasting household energy consumption. While traditional models like Linear Regression and LSTM show higher 
MAE values of 0.390 and 0.410 respectively—indicating less accurate predictions—the CNN-LSTM model significantly 
improves accuracy with an MAE of 0.188. However, the proposed model achieves the lowest MAE of 0.176, 
demonstrating its enhanced ability to minimize prediction errors and better capture both spatial and temporal patterns in 
the data (Figure 1).  
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Figure 2: RMSE comparison of proposed model with existing 
The Root Mean Square Error (RMSE) values in the table highlight the progressive improvement in forecasting accuracy 
across the models. Linear Regression and LSTM exhibit higher RMSE values of 0.501 and 0.489 respectively, reflecting 
greater deviations and less reliable predictions. The CNN-LSTM model significantly enhances performance with an 
RMSE of 0.252, indicating reduced prediction error. However, the proposed model achieves the lowest RMSE of 0.238, 
demonstrating its superior capability in minimizing large errors and accurately forecasting household energy 
consumption (Figure 2). 

 
Figure 3: MSE comparison of proposed model with existing 
The Mean Squared Error (MSE) values show a clear trend of improving model accuracy from traditional to advanced 
deep learning approaches. Linear Regression and LSTM models record higher MSE values of 0.251 and 0.239, indicating 
larger average squared errors in their predictions. The CNN-LSTM model marks a significant improvement with an MSE 
of 0.063, demonstrating its effectiveness in handling complex patterns. The proposed model outperforms all others with 
the lowest MSE of 0.056, confirming its precision and robustness in predicting household energy consumption (Figure 
3). 
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Figure 4: MAPE comparison of proposed model with existing 
The Mean Absolute Percentage Error (MAPE) values clearly demonstrate the improved forecasting accuracy of the 
proposed model compared to existing approaches. Linear Regression and LSTM models show relatively high MAPE 
values of 52.10% and 38.50%, indicating larger deviations from actual values. In contrast, the CNN-LSTM model 
significantly reduces the error to 18.90%, while the proposed model achieves the lowest MAPE of 17.85%, confirming 
its enhanced ability to produce more accurate and reliable household energy load predictions (Figure 4). 
CONCLUSION 
In conclusion, this study presents an efficient deep learning framework for predicting household energy load in smart 
energy systems, integrating Convolutional Neural Networks (CNN) with Gated Recurrent Units (GRU). The proposed 
hybrid model effectively captures both spatial and temporal patterns in energy consumption data, outperforming 
traditional models such as Linear Regression, LSTM, and CNN-LSTM. Through extensive experimentation using real-
world household energy datasets, the model demonstrated superior performance across multiple evaluation metrics 
including MAE, RMSE, MSE, and MAPE. The inclusion of external contextual features such as weather conditions and 
holidays further enhanced prediction accuracy, validating the model’s robustness and adaptability in dynamic 
environments. The results underscore the potential of the proposed deep learning approach to serve as a reliable 
forecasting tool in smart energy management systems, enabling more informed decision-making for demand-side 
management, energy distribution, and cost optimization. Future work can explore the integration of additional contextual 
factors such as appliance-level consumption data, socio-demographic variables, and real-time feedback mechanisms. 
Moreover, deploying the model in edge or cloud-based environments could facilitate real-time energy monitoring and 
control, contributing significantly to the development of intelligent and sustainable smart grid infrastructures. 
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