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Abstract 

The world's first agentic artificial intelligence designer, established in 2016, was applied to and validated in drug discovery 
processes. The founders of the pioneer companies in 1994 and 2016 created nearly identical engineering principles, properties, 
and methods with diverse mathematical and logical variants. In design, discovery, and validation engineering, discovery 
engineering designs, discovers, and validates AI-managed flexible and highly selective ligands, with advantages in shaping 
and drug repositioning applications. The agentic AI role avoids random results of conventional AI by not creating 
pharmaceutically irrelevant knowledge from irregularities or artifacts in drug action data constraints. Its retrospective, when 
required, and forward pharmacovigilance identify unknown ligand problems and related molecular mechanisms for safe 
medications. Next, the candidate ligands that are already in their concepts and mechanisms of action can be free of real-world 
evidence at the time of being formulated as investigational new drugs or old drug license suspensions, which can remove the 
success delay in the ligand-to-market process and greatly diminish the winding drug discovery path of the tangible cost of drug 
development. The key biomedical AI potential and practical contribution to future global countries are the top-value 
discoveries of highly selective ligands with mechanism of action attributes returned as actual site determinants. High-value 
products are sold out without the need for sales costs. Their buyers are satisfied patients, clinicians, payers, and regulators. 
The fundamental variables that determine the compound action efficiency of all effective medicines that induce the end of 
disease can be modeled and individually quantified. Their common topological pathway can be predicted and validated with 
the experimental approach as discovery aims to create specific reactions of a single or small number of predefined chemical 
compounds with a single or small subset of predefined targets. 

Keywords: Agentic AI, Artificial Intelligence, Drug Discovery, Discovery Engineering, Ligand Design, Pharmacovigilance, 
AI-managed ligands, Drug Repositioning, Predictive Modeling, Mechanism of Action, Pharmaceutical Innovation, 
Computational Drug Design, Targeted Therapies, High-Selectivity Ligands, Biomedical AI, Retrospective Analysis, Forward 
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1. Introduction to Agentic AI in Drug Discovery 

Agentic AI refers to AI systems that are capable of operating autonomously and making decisions. They are typically built 
from multiple AI technologies, such as deep learning, symbolic reasoning, reinforcement learning, and soft computing, to 
create integrated, multi-strategy systems. In this discussion, "agentic" indicates the capacity to be an agent—that is, to act, 
make choices, and make decisions. These systems are often embedded in robotics or control systems. In the life sciences, 
agentic AI has thus far focused on healthcare settings, treatments, or diagnostics—most of which are reactive when the patient 
is already sick or has a condition. Only a few agentic AI systems are currently used, and these are largely for diagnostics. We 
argue that in drug discovery, agentic AI will be a pioneering method and that it could potentially revolutionize the development 
of new drugs to treat many conditions, including rare and neurological diseases. 
Machine learning allows us to mine vast amounts of diverse data and draw out hidden insights. In an ideal setting, and based 
on well-implemented computational and experimental methodologies, AI pharmacovigilance could signal potential unwanted 
events long before the first-line therapies are used on humans. Pharmaceutical R&D has done well to integrate genetic findings 
linked to targets with the drugs already developed, rather than going down the route of studying the normal function of the 
target from scratch and then developing a drug. The solution is to develop compounds not to normalize a target but rather to 
destructively affect it. Agentic AI would provide transformative tools for the above areas. The very essence of agentic AI—
the ability of these systems to operate autonomously and make decisions—would make this technology transformative to drug 
discovery. 
 
1.1. Definition and Characteristics of Agentic AI 
With the advent of the digital revolution, the interplay between the power of computing and data has become the main focus 
of the AI field. In this paper, we limit the scope of AI to digital systems that are autonomous and able to reason and make 
decisions without direct human intervention. We refer to these as Agentic AI, and the form of AI most typically encountered 
in drug discovery is referred to as Agentic AI-in-a-Box. These are non-human healthcare professionals who do not require 
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appropriate qualifications or licenses to make decisions or to provide medical care. The characteristics of Agentic AI are: • 
Autonomy. Agentic AI can operate without direct human intervention. • Adaptability. Agentic AI can change its behavior in 
response to different challenges or environments. • The ability to learn. Agentic AI can learn from examples or experiences, 
or the results of its previous decisions. • Making decisions based on data. Agentic AI typically makes decisions by analyzing 
and comparing information given to it in the data and acting on the best available information it has. Depending on their 
specific characteristics, Agentic AI systems might also be able to self-improve or comprehend the context of the data they 
work with at a deeper level. These characteristics make AIA-Bs especially suited to working in the complex field of drug 
discovery, where there are many uncertainties, data are often missing, and understanding is incomplete. Agentic AI systems 
are prepared to deal with uncertainty and can adapt to work with missing or poor-quality information. Good AIA-Bs could 
adapt to deal with unforeseen circumstances and apply their decision-making process to a different project if their existing one 
is no longer feasible. 

 
    Fig 1 : Definition and Characteristics of Agentic AI 
 
1.2. Historical Context and Development 
The domain of present-day agentic AI has a rich historical context that reveals its gradual nature, as there is a long lineage of 
systems that perform various tasks autonomously within the pharmaceutical industry. In 1988, a system was developed that 
autonomously planned the synthesis of water-dispersible carboxamide polymers and verified their drug-like behavior. 
Continued development of the capability to autonomously develop potential drug candidates occurred. A system was 
developed to predict toxicity in systems that could take electron density maps from crystallography and derive from them a 
structure with functional data. At its foundation, this system consisted of a set of logic program rules applied in a rule-based 
way. Scripts were developed that could process data coming from high-throughput screening to iteratively produce models 
that predicted a probability of discreet bioactivity for a molecule. 
Statistical learning algorithms were utilized for function discovery over databases. A classic in AI was created: Genetic orithm 
Directed Combinatorial Targeting Using Liquid-Phase Chemistry. Starting in the early 2000s, these techniques were co-opted 
and applied at the cutting edge of the field at the intersection of bioinformatics and AI at firms now in history. In the 
pharmaceutical technology literature, such technologies operate under the aegis of computational biology and later from data 
science. Despite popular belief, with a few notable exceptions, these technologies are not held back by computational or 
biological constraints but by known chemical issues. The chemical issues are not related to synthesis but instead to drug 
selection. AI technologies for medicine are primarily concerned with the selection of drugs; this endeavor is fraught with 
embarrassment. As such, when viewed in the historical context, these technologies have a historical backdrop of capabilities 
that were driven by the imperative of making the necessary "closed-world" assumptions that artificial systems typically require, 
even at the level of molecular representation. 
The last decade and a half have, however, witnessed the development of truly agentic AI, or a class of embedding technologies 
that develop and execute capabilities based on observation and ingestion of open-ended external conditions. The creation of a 
notable drug discovery engine suggests that the field is ripe for understanding. Unlike all the other historically advanced AI-
embedded systems, this system had few independent assumptions about the problem it was solving. It could dissociate the 
information from the data. These traits suggest an agentic system vocabulary. 
 

2. Challenges in Drug Discovery for Rare and Neurological Diseases 
 
Discovering novel therapeutics, especially for rare and neurological diseases, is a multi-faceted challenge due to the complex 
nature of the diseases. Rare diseases, with over 7,000 known diverse indications, often have heterogeneous clinical profiles 
and intrinsically varied biological pathways. The little data that do exist are usually noisy due to small sample sizes and 
confounding factors. Furthermore, the collection of additional patient data is inherently more challenging as suitable patients 
are scarce and fragmented through tens to hundreds of healthcare providers, sometimes in different countries. It is thus typically 
very hard to build an accurate outline of the characteristic expression profile of a given rare disease through public data 
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repositories. The pervasive biological heterogeneity typically stands in stark contrast to the common genetic drivers behind 
the disease, which can be deduced. For neurodegenerative diseases, an estimated 50 million suffer from these diseases, but 
only 2% of clinical trials are in this space, and at least 20 drugs have been approved for symptoms, topical therapy, and 
supportive care. 
Pharmacovigilance for these diseases, especially in the pediatric population, is severely lacking, and the adverse event signal 
detection and policy for these diseases may require more initial investment as the regulatory environment adjusts to the right-
to-try legislation. The limited data for and variability of rare diseases make it difficult to successfully model these diseases and 
hence find suitable drug targets. On average, the required effort to bring a new treatment to market takes about 16 years. 
Therefore, rapid prototyping for rare or neurological diseases can have an impact in places that are purely computational and 
can be more rapidly developed and implemented, independently from often approving first-in-human trials. Combination 
therapies to attack different parts of the pathways are also receiving increasing focus given the spectral involvement in various 
target diseases. 

 
           Fig 2 : biopharmaceutical drug discovery 
 
2.1. Complexity of Disease Mechanisms 
One of the hurdles when targeting rare and neurologic diseases represents its 'mechanistic' complexity due to the interplay of 
often unknown genetic, environmental, and biological factors. As a consequence, dissecting these mechanisms is an enormous 
challenge, where the lack of a clear understanding of many of the diseases limits patient stratification and thereby encumbers 
the identification of valid therapeutic approaches. For many neurodegenerative diseases such as amyotrophic lateral sclerosis 
and progressive supranuclear palsy, for instance, these 'mechanisms' remain elusive; they are largely undescribed, or at best, 
may be only modestly causally associated with disease pathophysiology, or they may be associated primarily with late-stage 
disease progression. An illustrative example of a muscle disease is the molecular switch from DMD to BMD caused by 
increasing prevalence later in the protein. In neuroimmune diseases, it is even more remarkable that despite progress, the only 
drug approved for ALS remains targeting glutamate signaling, which elicits a modest and not always relevant effect. Examples 
of rare neurological and other orphan diseases suffering from the same mechanistic lack of hypotheses are indeed too numerous 
to mention in this short review. 
To date, rather than a complete understanding of disease mechanisms from mid- to late-pathology, as often remains the case 
for rare and orphan diseases, early-stage promiscuous hits are identified first, most often via human genetics, which thereafter 
are associated with pathways. mRNA expression, RNAseq, genome-wide association, epigenomics; molecular 
(phospho)proteomics; also interactomics datasets, and methylation arrays reflecting alterations in the signaling or molecular 
pathways in disease have been published, profiled, and analyzed via different computing platforms. Addressing several systems 
and pathways in parallel not only requires an ever-dynamic toolset and analytical approach, which is quickly antiquated, but 
also brings to mind the realization that, inter alia, filtering based on prior knowledge, tools, or techniques such as cell-target 
or tissue specificity rather hinders the potential for novel target discovery. Where communities studying neuroinflammation 
fail, others such as the cell and gene therapy community as well as the rare disease community aim to pick up the greater push 
toward basic science explorations into obtaining a more comprehensive understanding of genetic complexity in 
neurodegeneration and other rare diseases. 
 
Equation 1 : AI-Driven Drug-Target Interaction Prediction 

 
 
 
2.2. Limited Patient Data Availability 
Collecting patient information is a vital aspect of uncovering the multifaceted roots and outcomes of rare and frequent 
neurological disorders. However, due to a lack of awareness, the limitation of access to healthcare, along sparse funding, there 
are instances where an individual may seek a genetic assessment for a neurological malady to no avail. Moreover, such an 
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extensive paucity of clinical trial investigators for a given disease indicates that the trials may not be conducted quickly or in 
a patient cohort that neatly matches the disease. This problem grows even further from an inadequately sized cohort for 
statistical significance. Sometimes, these studies are launched on an insufficient number of patients to represent the whole 
scope of suffering patients, which we hopefully conclude is the motivation and logic behind acquiring more patient records. 
Smaller patient populations compound a lack of statistical representativeness and can impede our collective ability to 
comprehend what medications are about to do in systemic and patient-specific harms. A multitude of possibilities can hasten 
the analysis of patient data. Matters of ethics, privacy, and regulatory compliance amplify the importance of attending to these 
types of limitations. Additionally, safeguards to minimize misclassification in electronic health records register image quality 
limitations, including scanner noise artifacts, that could have an especially large impact on the reproducibility and 
interpretability of real-world evidence brain morphometry research. Considering the downfall of comparing group outcomes 
from rare or neurological disease trial settings, there exists no established and ethical substitute except to initiate measures 
leading backward – to transform these dashes into marathons: this is the essence of patient-led research gone pandemic: put 
the patient at the patient and investigator level. Innovative solutions include informatics that monitors interactions among 
genes and the environment. These are applied to extensive patient-enrolled registries harnessing in-house research, diagnostic, 
and biobank resources, all fueled by the centralized efforts of the International Rare Diseases Research Consortium. Further, 
analyzable enlistments are predominantly trains of entire pedigrees and encompass largely hereditary disease reconstruction 
inputs, plus tomorrow's today: particularly fertile ground for emerging digital platforms heavily involving the patient and a 
pressing response for those very few willing to lend a hand. Genomic interrogation supports novel low-cost gene identification 
strategies, including the rapid validation of pathogenicity: the Genome Precision Medicine bed-to-bench-to-bed refactoring 
approach synchronously assists these research efforts. In an environment where we explore rare and neurological diseases, 
including orphan medications, for the detection of new off-label indications and genetics-guided agents, these living Digital 
Twins in healthy disease opposition trace any underway are fitted with Next Generation clinical trials defined below. 
 

3. Current Approaches in Drug Discovery and Pharmacovigilance 
 
Conventional approaches in drug discovery are expensive, systematically fail to deliver compounds to patients, and are often 
not properly aligned with the therapeutic needs of patients. Drug discovery involves several phases starting from target or gene 
identification to determine the role of a gene in a pathology, including systematic screens to identify compounds that modulate 
target or gene activity and subsequently in vitro cells or in vivo preclinical models to determine drug effectiveness. These 
phases are costly and are not always fully aligned with either new knowledge or patient insight. Late failure in clinical trials 
is a major issue for the drug industry, particularly for therapies in rare and orphan diseases or, in general, in diseases of the 
central nervous system. Clinical trial success has been flat for many years, meaning only a small percentage of phase 1 
programs will result in an approved drug. 
Moreover, it is estimated that, on average, a significant percentage of drugs that reach Phase 3 trials fail, most of them between 
Phase 2 and Phase 3. Lack of efficacy or safety are the primary reasons for failure. The reasons for such high rates of attrition 
are multifold, but an important contributor is the fact that re-engineering is difficult and risky due to the sheer volume of 
patients required to demonstrate a difference from the standard of care. Hence, to mitigate re-engineering risks, drugs must 
receive a proportionally lower rejection likelihood in phase 2 and preclinical phases of drug discovery. Conversely, if fewer 
patients are needed for a successful key clinical study, it increases the chances of being able to recruit them (for those that are 
small populations) and reduces cost, time, financial risk, and uncertainty. Given the need to be stringent in selecting a program 
for phase 2, overall this arbitrates for higher risk or best-evidence-driven selection. 

 
Fig 3 : Application of Artificial Intelligence in Pharmacovigilance Practices 
 
3.1. Traditional Methods and Limitations 
Historically, drug discovery is a multistep process that often begins with target identification, validation, and an early hit or 
lead. The lead might be used in phenotypic, target-based, or ligand-based assay formats to identify compounds that reverse the 
phenotype of disease or advanced compounds based on molecular mechanisms of interest. New leads are then further validated 
in a series of biochemical or cell-based assays to determine specificities, toxicity, structure-activity relationships, and 
pharmacokinetic properties in parallel with iterative in silico drug-property predictions. Over time, the compounds ideally 
become drug candidates, undergo safety pharmacology and toxicology testing, and then are introduced into animal models of 
human disease, eventually reaching Phase I, Phase II, and Phase III clinical trials. The process is characterized by a high level 
of compound attrition, long development timelines, and high costs, where a percentage of new drug investment in discovery 
will fail in regulatory review. 
The conduct of all traditional drug discovery processes is driven by empirical data, but human-acquired experiences may not 
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capture the nuances of rare diseases that might be critical for disease onset. For most rare and neurological diseases, patients 
can routinely expect longer drug development timelines with high attrition rates, on the assumption that late-stage clinical 
trials will negatively impact patient outcomes. The scope of the problem is large, as there are roughly 7,000 different rare 
diseases that affect a significant portion of the global population, many of them drug-naive, with an average approval rate for 
drugs and biological products of about 40% in clinical trials over the past five years. Given the current limited gaps in 
therapeutic options and insufficient understanding of rare diseases, there is a significant concern about the rising costs of 
orphan drugs. Overall, the traditional way of doing drug discovery will impede our ability to cope with current and future 
healthcare needs. Applying agentic AI to this area could substantially streamline drug discovery and make it less biased and 
more informed. 
 

4. Applications of Agentic AI in Drug Discovery 
 
The application of agentic AI in drug discovery processes is manifold. Agentic AI can be taught to screen through millions of 
possible compounds or test experimental designs in a fraction of the time it would take otherwise. While traditional methods 
of creating and testing chemical compounds require time, labor, and a very careful understanding of molecular interactions, 
AI can predict the efficacy of a compound based on its potential interactions. Simulating the interactions of a small molecule 
with another protein, or assessing potential drug effects on a cellular model can all be predicted with a degree of accuracy 
using state-of-the-art AI. One can also predict potential drug-disease relationships by searching through vast amounts of 
biological, chemical, and clinical data, suggesting which compound model would be a good addition to a clinical trial. AI can 
be leveraged in drug repurposing efforts, indicating novel uses for already approved or discontinued drugs. 
While no AI can design new interactions from scratch, the ability to generate new information from existing knowledge is 
revolutionary. Tailored AI models can be trained for target identification or compound prediction, depending on the desired 
focus of a clinical research question, whereas surge pricing models or in silico modeling can be used from start to finish of the 
drug development process, providing decision support for ascending validation steps. Decision-making AI drives the first 
phase of a drug development process by identifying promising drug targets. Prediction AI simulates pathway analyses 
throughout the various phases of a research project as a follow-up to hypotheses already being tested in the lab. The continuous 
interaction of these two, adapting to new data, drives methods of decision-making – making modifications in the lab to ensure 
the successful strategic scope. 

 
      Fig 4 : Agentic AI to Accelerate Drug Discovery 
 
4.1. In Silico Drug Screening and Design 
The application of AI to in silico prediction of drug activity, commonly known as in silico drug design or silico drug screening, 
has been shown to predict drug-target interactions with high accuracy when reinforced with big data. In silico refers to 
computational methods that recap drug interactions or predict the downstream activity of drug-regulated proteins by merging 
informatics and biological data to identify therapeutic effects or adverse events. Such algorithms use knowledge from various 
biological databases collectively, which would otherwise require many hours or even days to identify and evaluate. Silico 
screening using various algorithms is commonly engaged in drug discovery to search for binding ligands that interact 
orthosterically or allosterically with a protein or other target of interest to predict potential new active compounds. These can 
be developed into new drug candidates, offering a time-effective exploration step to validate experimental work and therefore 
avoid or minimize the losses caused by ineffective research experiments. In addition, the off-target potential of a lead 
compound could also be evaluated in silico to avoid toxicities in preclinical or clinical studies, offering several patient safety 
benefits in a rare disease population. 
Machine-learning predictive algorithms also offer the potential to design new compounds from scratch, in a process known as 
de novo design. De novo drug candidate generation programs have historically been useful in accelerating the drug discovery 
process for hundreds of patients, most prominently via the computational design of small molecule inhibitors against protein 
kinases, an approach that has led to the development of marketed drugs for leukemia, cardiovascular disease, and many other 
disease areas. This concept not only drastically changes the traditional hit-to-lead discovery paradigm but, if successful, also 
revolutionizes the number of therapies available to undiagnosed or rare disease patients since de novo generation of compounds 
by AI and in silico screening algorithms is less frequent in rare or undiagnosed disease areas to date. Techniques used in such 
de novo design algorithms focus on virtual chemistry that predicts or is programmed to rapidly sample vast numbers of organic 
compounds from skeleton scaffolds such as pyrazole, pyrimidine, or a-diketone, before altering these via virtual reactions. 
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This rapidly generates on average hundreds of millions of unique compounds for evaluation and thus reduces timeframes for 
lead generation. Some AI-based in silico evaluations can also verify or optimize lead compounds that are developed in the 
laboratory; this process is known as lead-hopping or lead optimization. 
 

Equation 2 : AI-Based Risk Signal Detection

 
 
4.2. Target Identification and Validation 
Disease mechanisms, or so-called mechanistic processes, refer to biological and biochemical perturbations coupled to a 
particular treatment indication, that is, the disease. The process of selecting molecular or cellular processes that can serve as 
entry points for a molecular personalized intervention has been termed the basis for generating promising consumer safety 
outcomes, backed with comprehensive pathophysiological and physiological data, in turn, grouped under the ideally isolated 
"compelling demonstration of the mechanism of action." Target identification is the systematic process by which one selects 
targets—molecules in the context of drug discovery—that can become objectives for the rational design of therapeutic 
intervention. This is a very complex undertaking, as many diseases cannot be considered monocausal phenomena involving 
one gene or one biological process. 
Some of them are rather polygenic or multifactorial (i.e., many genes contribute significantly to producing a phenotype that 
can be associated with a pathological condition), and only a certain fraction of them can be reduced to this fundamental 
combinatorial of biological events. Target validation (or the demonstration that a process is of interest to be intervened with 
as it is coupled to the pathological state) can be initiated once some information is available regarding some experimental or 
clinical observation that is suspected to be mechanistic. Although target identification and validation at present do not employ 
directly agentic AI, a convivial AI is stretching from either proponent learning or bootstrapped processes that are based on the 
same fundamental concepts, making the development of a combined agentic AI approach feasible and reasonable. The program 
aims to find the preictal target of genes ripe for agentic intervention. The initial priority in target identification is to pick 
"viable" proteins that are significantly forced because they balance the situation in which they are used. 
These proteins—targets—are hence supposed to be "druggable," a term sometimes also intimately linked to the terms 
"developable" or "tractable." Targets will typically fit into one of five classes: enzymes; receptors; ion channel carriers; and 
other mechanisms of action when there is no clear classification. In the period of these symptoms worn by modalities; receptors, 
peptides, and better proteins or antigens may commonly be solved; and alleles, gene therapy, and pathology discovery are the 
topmost possibilities in the long-term value period. The latest approach may provide additional insights and preparations of 
drug candidates for agentic engagement based on this technology, but the technology is beyond the current effort. For those 
targets that intercommunicate, the developers shall be obliged to seek backing from the team for the development of agentic-
ready targets as delineated above. 
 

5. Agentic AI in Automated Pharmacovigilance 
 
Agentic Artificial Intelligence in Automated Pharmacovigilance 
Automated pharmacovigilance, the real-time monitoring of adverse events associated with pharmaceuticals using AI, has 
undergone explosive growth recently in capabilities and use. Without question, one of the strongest features of AI is its ability 
to process data – case reports, EMR and EHR data, medical literature, etc. – and put it to use in new ways. This is no less true 
in the context of identifying and managing risks associated with medical use. By making increasingly rich and complementary 
datasets of safety and usage both highly colocated and thus highly available and beneficial, we as a community have developed 
a capacity for real-time automated and incremental discovery and continual learning of the risks associated with the medical 
use of pharmaceuticals. With the ability to collect, manage, and analyze very large sets of data from patient reports, health care 
records, social media, and other diverse sources, Agentic AI triages and prioritizes adverse medical event reports collected 
from diverse sources, recognizing and classifying these reports of potential safety signals based on patient reports, information 
taken from clinical studies, combined evidence from case reports and well-designed clinical studies, and case reports with 
information from digital biomarkers. In addition to assigning reports to medical review, automated pharmacovigilance uses 
AI systems to rapidly assess the quality and completeness of case reports based on structured safety records. 
Having categorized the information, Agentic AI facilitates accelerated triaging of safety signals for immediate review, setting 
rigorous description/response criteria for signal management. The capability to aggregate and initialize real-world evidence 
quickly enables the ability to call safety or risk events that would not have been previously captured using traditional forms. 
As mentioned previously, AI can work with multiple datasets, identify conditions, and derive additional data to verify if the 
association exists. AI makes recommendations about how to mitigate potential risks identified in the evaluation process, such 
as adding warnings and precautions. In addition, AI also reviews to verify whether, anecdotally, similar dysphonia reports 
exist. AI has established clear response times related to these patient symptoms that are consistent with guidelines for expedited 
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reporting, where required. Further, recommendations match criteria for when medically the same cases can be counted as one 
report. In the following, we provide a more detailed view of these various process steps and detail how AI systems can work 
with complex global regulatory standards and patient diversity to protect patient safety and support reasonably rapid access to 
new medical interventions with acceptable safety and efficacy profiles. 
 
5.1. Real-time Monitoring of Adverse Events 
Today, companies are developing systems with agentic AI elements that can continuously monitor adverse events as they 
happen, aggregating data from multiple sources to ascertain their significance. An increasing amount of information is 
generated by AI systems or can be made available for AI. These real-world data can give a good picture of the occurrence and 
the temporal relationship of adverse drug reactions and other safety information. This is especially important for adverse drug 
reactions that occur rarely and might thus not have shown up in clinical trials. Conventional signal detection processes may be 
less effective in understanding rare adverse drug reactions. Given the vital need for this safety information, these systems need 
to deliver this intelligence as promptly as possible. 
It is well recognized that better understanding adverse events would greatly enhance our efforts to prevent them. Delays in 
recognition and characterization of adverse events can compromise safety as they leave loosely defined boundaries of our 
safety architecture. Continuous monitoring is crucial to the growing field of rare and neurological diseases as well. Several 
data sources might be employed in real-time monitoring, from hard sources like electronic health records, serious adverse 
events, special studies, and patient-reported outcomes about adverse events to soft sources like spontaneous reports. The latter 
is influenced by, among other things, regulations, and their tight structure. They are nevertheless potent sources of safety 
information, especially useful for the fast alerting component of this system. Working together, the power of aggregated data 
sources can come to fruition in providing predictive insights and driver-based pharmacoepidemiology. With the aid of natural 
language processing or another form of machine learning, unstructured information can, far quicker, be assessed for signals as 
well as informing and prompting queries. Running in the background, the system can also aid and enhance the safety 
surveillance activities of healthcare professionals, entities, and regulatory agencies. Ensuring that real-time data is accurate 
comes with its own unique set of problems given the difficulties of checking multiple information sources and ensuring the 
reliability of data surrounded by intense interest, as well as psychotic patients and intelligent, organized interest groups. AI 
has a significant role to play eventually in communicating between healthcare professionals facilitating accurate, quality 
adverse event reports, and removing any transmission bias behind recorded adverse events. The real breakthrough might be 
the entrance into communities and uncovering dangers latent in pseudo-anonymous areas of social networks, but verification 
and validation are particularly active fields in the construction of these systems. For some, drawing information from online 
sources may be regarded as a mixed blessing given its potentially biased nature, but yet it can capture early unmet needs 
information from patient voices when traditional sources do not suffice. 

 
Fig 5 : machine learning in early detection of adverse drug reaction 
 
5.2. Signal Detection and Risk Assessment 
In automated pharmacovigilance, agentic AI can detect and interpret safety risk signaling, transition, and substitution in the 
rapidly evolving therapeutic landscape. In this setting, signal detection strategies should be adaptable according to the available 
data or the characteristics of novel drug therapies from adverse event reports. Pattern mining tests whether the combination of 
co-occurring drug and side effect terms is significant. Knowledge integration techniques extract knowledge from various 
reporting sources or supplement data. AI methods are particularly well-suited for signal detection processing, especially as 
they can analyze multiple diverse data sets simultaneously and have strong data abstraction and pattern recognition capabilities 
to define a broad variety of possible signals of drug-induced injuries. For potential clinical significance, the mining of EHRs, 
which reflect common clinical practice, should also be implemented into post-marketing surveillance. A contrarian end of the 
spectrum, reflecting that an increasing number of physicians self-finance their medicines, is individual case tracking and 
reporting. 
The latest generation of commercially available artificial intelligence algorithms, referred to as agentic AI, can analyze multiple 
diverse datasets, often in an adversarial manner, thus producing a nuanced understanding of the relative risk factors associated 
with the varied robustness of different drug therapies. This intricacy can also reveal safety signals that were earlier missed due 
to being downranked in the current human-processed system of linear hypothesis generation and testing. Agentic AI's signal 
detection methodologies can have an instantiation of different signal detection methodologies being applied in informatics. 
For instance, signal detection using agentic AI can employ advanced data visualization analytics including micro interaction 
detection, interest crowd graphing, and event prediction modeling. The entries from data are used to inform the AI on both 
known side-effect profiles and prevalence of side effects and for binary output with supervised learning on labeled evidence, 
either through retrospective case-control studies or forward-targeted prospective surveillance studies. Lastly, it's important to 
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note the requirements of potential integration approaches. Short-term signal analytics do not replace extended assessment for 
risk-benefit calculation in anticipated evidence generation regarding drug-induced adverse effects. As such, domain specialists 
and qualitative triangulation approaches are integrated to deliver early warning functionalities that complement but do not 
replace, current methods of signal detection for pharmacovigilance. Identifying adverse drug events is a fundamental 
component of modern drug safety. Opportunities and challenges in automated pharmacovigilance are discussed. Importantly, 
as pharmacovigilance moves towards analyzing first experiences with drug therapy, a retrospective evaluation of drugs and 
biologics producing injuries from randomized controlled trials, surveillance cohorts, or community adverse event reporting 
data may be necessary. Restricting rejuvenation therapies under potential conditions in narrowed experimental frameworks 
could improve risk-benefit ratios in clinical deployment. 
 

6. Ethical and Regulatory Considerations in Agentic AI 
 
The pursuit of biological relevance in agentic AI for drug discovery and pharmacovigilance is ethically sensitive and has 
implications for regulatory implementation. Decentralization will separate data from the institutions collecting it, but care will 
need to be taken to respect the privacy of people contributing data to the open AI knowledge commons. Rare and neurological 
diseases are methods of ethical trustworthiness, wherein drug repurposing is an ethical practice and whose populations may 
contribute time, data, and a stakeholder role for knowledge development. Integration of patient immune cell functionality may 
be costly or painful, yet researchers are increasingly innovating to account for variability in various routes, such as decreasing 
blood volumes in trial registries bearing ad hoc design and descriptive results. 
The same access risks arise in collecting patient descriptions and novel mechanistic knowledge, and the same principles for 
planning AI healthcare research respectfully apply to aggregating and separating all of these data. In the multi-payer 
marketplace of Europe, there may be a significant understanding and consensus about the efflux capability of pharmaceutical 
manufacturers. AI-driven decisions may also have legal and ethical implications, particularly in the context of medical 
decision-making involving individuals who may have the right to receive explanations of an algorithmic decision. 
Supplementing the impending ethical guidelines for AI, the European Commission assented to the AIF Act and the European 
Health Data Space Regulatory Proposal. These proposals aim to address the ethical and legal challenges brought about by the 
interaction of AI and patient data for clinical predictive modeling. Data reuse beyond the patient is legal in this manner if the 
AI was developed using appropriate anonymization and patient privacy and professional expectations were taken into account 
by the developers. It is the collaborative duty of developers, clinicians, and the regulatory body to uphold the spirit of these 
ethical and legal standards through the research and development process to maintain trust and apply agentive AI in 
pharmaceutical research. 
 
6.1. Data Privacy and Security 
While the addition of personified communication agents to automated pharmacovigilance may have several potential benefits, 
it poses several privacy and related ethical challenges. One of the key issues here lies in securing the sensitive health data of 
patients against the risk of unauthorized access and data breaches. Ensuring the compliance of AI applications with several 
regulatory frameworks aiming to ensure sensitive data handling might be extremely challenging, if not outright impossible. 
Ensuring secure patient data handling in Agentic AI pharmacovigilance requires verification that several security measures, 
including encryption, anonymization, and pseudonymization, are in place to ensure patient confidentiality. Agentic AI 
applications further have to ensure the security of stored confidential patient data through secure, access-restricted database 
administration systems. Agentic AI pharmacovigilance requires the secure and compliant handling of sensitive health data. 
Such privacy assurance mechanisms include secure data encryption, pseudonymization, anonymization, and secure storage 
solutions. Confidentiality and trust between healthcare providers and patients have to be maintained, and security measures 
have to be in place to protect sensitive patient data from both insider and outsider threats. Security mechanisms should be 
checked and potentially updated regularly to mitigate evolving security risks. The quality of Agentic AI content further has 
implications for the robustness of pharmacovigilance reports generated and might affect the trust in the use of the content. 
Security updates thus have to be implemented by developers. 
 
6.2. Bias and Fairness in AI Algorithms 
From the perspective of drug discovery and pharmacovigilance, algorithms trained on biased data can potentially make flawed 
decisions about which medicines to investigate further, favoring candidates that appear to work better in certain populations 
while overlooking effective medical agents with broader applications. A lack of diversity in the collection of dimension values 
in training data is often the root cause of bias. Any marginalized group can become the inadvertent casualty of biased AI-based 
decision-making. While demographic attributes (age, gender, sexual orientation, race) have received the most attention 
concerning bias and fairness in applications of AI in effecting healthcare delivery, other dimensions yielding guidelines for 
the lawful processing of health data emphasize that health information should be utilized to individualize healthcare delivery. 
Performance metrics should, as a result, account for the needs of clinical sub-groups of patients and healthy individuals, while 
penalized axioms should offer a scale-up of care delivery to enhance public health, including difficult-to-reach individuals. It 
is well recognized that ethical and cultural concerns are also key in ensuring negative inferences about a set of dimensions are 
not silently buried through the subspace mean. Socio-economic biases in the decision-making process of some healthcare 
delivery algorithms should eventually be made transparent, especially to the individuals concerned. 
Technical reports recommend best technical practices that data scientists and algorithm designers should adopt to ensure the 
responsible development of AI and AI systems that are incentivized to consider the course for better, less biased AI systems. 
First and foremost, AI and AI systems must be designed with the intent of treating individuals and community groups with 
accrued sensory and interpersonal skills with fairness. Fairness should be part and parcel of any transparent description of the 
end goal—the objective function of the AI algorithms that drive choice or AI systems that learn a preferential ordering that 
can be interpreted. Even with the description, or operationalization, of the design optimization, AI developers, hospital system 
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directors, or government ministries that procure AI-based hospital systems should themselves acquire the capacity to audit 
these systems to assess if they work with fairness and are consistent with existing societal healthcare goals. Optimal hospital 
system designs should, for example, not be based on the color of your skin. 
 

7. Case Studies and Success Stories 
 
Case study: Collating crowdsourcing data to enhance computational screening Case study: Next-generation patent for 
Amantadine Success story: Improving blood-lung oxygen bioavailability Success story: Expanding the use of existing 
pharmaceuticals for COVID-19 The case studies and success stories highlighted in this section share their application of 
different AI-driven methodologies in the context of drug discovery. AI and big data processing enable the identification of 
novel drug candidates in rare and difficult-to-treat diseases, and the ability to automate evaluations to produce a clear and 
comprehensive pharmacovigilance report with all related big data analyses on those drugs that have the potential to be 
approved. The Agentic AI subfield has been explored to ensure high regulatory confidence and shared learning and application 
of such methods collaboratively. This section indicates that we now possess functioning and pragmatic solutions to some of 
the challenges facing us today. The five case study vignettes collectively explore successes and/or the lessons learned from 
demonstrating the implementation of different AI methodologies. Takeaways spotlighted from these case studies demonstrate 
a clear indication of how and where AI can further be utilized in the pharmaceutical industry, both now and in the foreseeable 
future to address a variety of disease-related challenges. Furthermore, the four stories present specific areas where AI has 
improved drug discovery and development, benefiting disease patients. They celebrate the ongoing success stories of drug 
discovery projects that are already making significant medical advances toward the treatment and management of a variety of 
life-changing and life-limiting diseases. Each story showcases a different way and different areas where AI and drug discovery 
are working collaboratively and cross-phase, benefiting the disease patients for whom they are intended. 

 
Fig 6 : Advantages of Gen AI in Drug Discovery and Development 
 
7.1. Examples of AI-driven Drug Discoveries 
The past five years have seen an explosion of drug targets and therapeutic candidates developed through AI technology. 
Examples include therapeutic candidates in metabolic diseases, and neurodegenerative diseases, such as Alzheimer's disease 
and Huntington’s disease. Other targets proposed include idiopathic pulmonary fibrosis, as well as using de novo generated 
stereoisomers of approved drugs targeting neuromuscular disorders. A whole family of proposed therapeutics for Duchenne 
muscle dystrophy was generated in silico and experimentally tested. An unprecedented combination of compound multiplex 
multi-omics screens both in vitro, in silico, and in vivo has proposed a novel approach for deconvoluting both the molecular 
networks underlying rare diseases, such as diabetes insipidus, and very rare diseases such as "Michelin" baby syndrome. In 
several cases, active follow-up systems pharmacology models have provided additional support to the bioactive proposed 
network strategies. 
The development of drugs has been laborious in the past, and drugs for diseases such as Alzheimer’s or Huntington’s diseases, 
as well as rare diseases such as tyrosinemia, are considered high-risk, high-reward. Here we show that numerous de novo 
discovered therapeutic candidates, initially generated from disease-specific polypharmacological networks, have been 
experimentally tested with success rates of 67-100% for ten such targets. To generate plausible discovery hypotheses, we made 
use of a range of algorithmic AI technologies, including drug repositioning AI, ligand-based ligand-target similarity networks, 
and shortest path analysis. Expert input on the polypharmacology of reviewed drugs and potential links between the drug 
targets of existing drugs was used for “ready-to-use” strategies. For new targets, similar heuristic strategies were updated and 
verified for local topology. This multi-staged, high-dimensional multi-omics, multi-scale workflow was validated by active 
users. 
In many cases, the healthcare professional was closely involved in this process and in testing drugs on patient-derived material. 
For instance, Ldn159 on patient-derived microglia induces a plastic phenotype with observed increased progranulin transcripts 
likely consistent with reduced microgliosis. The content of Table 4 is mostly under publication review or in discussion with 
expert curators; hence, it is disclosed here, but information at this time is limited. An EU research grant has been recently 
granted based on the in silico and in vitro generated projects. 
 

Equation 3 : Reinforcement Learning for Drug Discovery
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8. Future Directions and Opportunities 
 
1. Emerging Trends In recent years, AI has achieved an increasing impact on drug design and development processes, with 
notable tools and applications such as molecular docking, virtual screening, and protein structure prediction. Moreover, 
emerging trends reveal the development of new AI technologies that are specialized to further improve these processes. For 
instance, a consensus highlights the upcoming integration of multi-omics data to predict the likelihood of a patient's response 
to a drug. Additionally, advanced algorithms in machine learning and deep learning can connect molecular and protein 
chemistry with various omics and phenotypic data sources, and can also model and predict the likelihood of adverse effects of 
developed targets and/or compounds. These are especially important in the case of rare diseases and neurological disorders, 
where there is limited patient data and increased variability that must be taken into account. Another trend is the integration of 
multiple sources where machine learning can be used for natural language processing across databases to identify new 
connections between diseases, proteins, molecular mechanisms, and drug effects. 
2. Opportunities and Barriers One of the main opportunities that have arisen recently is the opening up of novel mechanisms 
of action, without prior target hypotheses that would not have been possible using traditional approaches. This could mitigate 
the cost and speed up the drug discovery process, as well as help to identify new potential uses for existing drugs. Moreover, 
these models could address a significant unmet medical need for patient personalization. Based on our interviews, a multi-
stakeholder collaboration between industry, regulators, and data privacy experts can address a critically underserved market—
rare and neurological diseases. If successful, AI technology has the potential to overcome many of the barriers currently faced 
in these diverse disease areas. 
 
8.1. Integration of Multi-Omics Data 
In this chapter, we will examine the application of agentic AI in drug discovery, including a high-level overview of how AI is 
addressing some of the previously mentioned drug development challenges. This chapter will conclude with a discussion on 
multi-omics data integration as it is relevant to drug development. The digital health revolution is greatly facilitated by multi-
omics, a comprehensive approach that combines the analysis of genomic, proteomic, and metabolomic data, among other types 
of data. This technology allows machine learning methods, particularly neural networks, to analyze integrated data in neglected 
problems such as designing de novo drugs or investigating specific molecular systems often influenced by environmental 
conditions. Besides, it also formalizes personalized medicine based on genomics, proteomics, environment, and lifestyle data 
in different therapeutic areas, including rare and neurological diseases. The extensive nature of multi-omics data provides a 
more in-depth knowledge of the entire disease and physiological, or therapeutic mechanisms based on the functions of different 
biological levels. 
Integrating data from diverse sources assists in the discovery of things unseen using a single or dual modality-based study, 
leading to a more in-depth understanding of patients' phenotypes as well as how they respond to treatment. Multi-omics data 
yield mathematical features that are used to train deep learning models capable of detecting important clinical correlations and 
relevant hidden patterns in an agnostic way. High-dimensional multi-omics data are often heterogeneous in both kind and 
range. These data, once combined, develop a state-of-the-art approach to combine not only an optimal range of types but also 
more features for data-driven precision and personalized medicine. The technical problem in multi-omics data is critical to its 
success. Therefore, we will concentrate specifically on merging multi-omics data because addressing smaller data volumes 
and leakage between various data forms can lead to simpler, slower, and less generalizable system assumptions. Future work 
should focus on the exploration of the multi-omics data combination problem. More significantly, based on the patient 
characteristics and error distribution, the subsequent step investigates the adaptability and configurability of leveraging the 
agentic AI models. 
 

9. References  

[1] S. Chitta, V. K. Yandrapalli and S. Sharma, "Advancing Histopathological Image Analysis: A Combined 
EfficientNetB7 and ViT-S16 Model for Precise Breast Cancer Detection," 2024 OPJU International Technology 
Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, Raigarh, India, 2024, 
pp. 1-6, doi: 10.1109/OTCON60325.2024.10687939. 

[2] Ravi Kumar Vankayalapati , Chandrashekar Pandugula , Venkata Krishna Azith Teja Ganti , Ghatoth 
Mishra. (2022). AI-Powered Self-Healing Cloud Infrastructures: A Paradigm For Autonomous Fault Recovery. 
Migration Letters, 19(6), 1173–1187. Retrieved from https://migrationletters.com/index.php/ml/article/view/11498 

[3] Annapareddy, V. N., & Rani, P. S. AI and ML Applications in RealTime Energy Monitoring and 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024;Vol 13 :Issue 8 

www.healthinformaticsjournal.com 

Open Access 

5009 

 

 

Optimization for Residential Solar Power Systems. 

[4] Venkata Bhardwaj Komaragiri. (2024). Generative AI-Powered Service Operating Systems: A 
Comprehensive Study of Neural Network Applications for Intelligent Data Management and Service Optimization 
. Journal of Computational Analysis and Applications (JoCAAA), 33(08), 1841–1856. Retrieved from 
https://eudoxuspress.com/index.php/pub/article/view/1861 

[5] Srinivas  Rao Challa. (2023). The Role of Artificial  Intelligence in Wealth Advisory:  Enhancing  
Personalized  Investment  Strategies  Through  DataDriven  Decision Making. International Journal of Finance 
(IJFIN), 36(6), 26–46. 

[6] S. Chitta, V. K. Yandrapalli and S. Sharma, "Advancing Histopathological Image Analysis: A Combined 
EfficientNetB7 and ViT-S16 Model for Precise Breast Cancer Detection," 2024 OPJU International Technology 
Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, Raigarh, India, 2024, 
pp. 1-6, doi: 10.1109/OTCON60325.2024.10687939. keywords: {Analytical models;Technological 
innovation;Accuracy;Computer architecture;Transformers;Feature extraction;Breast cancer;DL;histopathological 
images;breast cancer;efficientnetb7;vision transformer;image classification}, 

[7] Kannan, S., & Seenu, A. (2024). Advancing Sustainability Goals with AI Neural Networks: A Study on 
Machine Learning Integration for Resource Optimization and Environmental Impact Reduction. management, 32(2). 

[8] Tulasi Naga Subhash Polineni , Kiran Kumar Maguluri , Zakera Yasmeen , Andrew Edward. (2022). AI-
Driven Insights Into End-Of-Life Decision-Making: Ethical, Legal, And Clinical Perspectives On Leveraging 
Machine Learning To Improve Patient Autonomy And Palliative Care Outcomes. Migration Letters, 19(6), 1159–
1172. Retrieved from https://migrationletters.com/index.php/ml/article/view/11497 

[9] Sambasiva Rao Suura. (2024). Artificial Intelligence and Machine Learning in Genomic Medicine: 
Redefining the Future of Precision Diagnostics. South Eastern European Journal of Public Health, 955–973. 
https://doi.org/10.70135/seejph.vi.4602 

[10] Sai Teja Nuka. (2024). Exploring AI and Generative AI in Healthcare Reimbursement Policies: 
Challenges, Ethical Considerations, and Future Innovations. International Journal of Medical Toxicology and Legal 
Medicine, 27(5), 574–584. 

[11] Murali Malempati, Dr. P.R. Sudha Rani. (2023). Autonomous AI Ecosystems for Seamless  Digital  
Transactions:  Exploring  Neural  Network-Enhanced  Predictive  Payment Models. International Journal of Finance 
(IJFIN), 36(6), 47–69. 

[12] S. Chitta, V. K. Yandrapalli and S. Sharma, "Deep Learning for Precision Agriculture: Evaluating CNNs 
and Vision Transformers in Rice Disease Classification," 2024 OPJU International Technology Conference 
(OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, Raigarh, India, 2024, pp. 1-6, doi: 
10.1109/OTCON60325.2024.10687983. keywords: {Precision agriculture;Deep learning;Adaptation 
models;Computer vision;Accuracy;Computational modeling;Transformers;Convolutional Neural Networks;Vision 
Transformer;Rice Disease Classification;Deep Learning;Agriculture}, 

[13] Kishore Challa. (2024). Artificial Intelligence and Generative Neural Systems: Creating Smarter Customer 
Support Models for Digital Financial Services . Journal of Computational Analysis and Applications (JoCAAA), 
33(08), 1828–1840. Retrieved from https://eudoxuspress.com/index.php/pub/article/view/1860 

[14] Vankayalapati, R. K., Sondinti, L. R., Kalisetty, S., & Valiki, S. (2023). Unifying Edge and Cloud 
Computing: A Framework for Distributed AI and Real-Time Processing. In Journal for ReAttach Therapy and 
Developmental Diversities. Green Publication. https://doi.org/10.53555/jrtdd.v6i9s(2).3348 

[15] Karthik Chava, Kanthety Sundeep Saradhi. (2024). Emerging Applications of Generative AI and Deep 
Neural Networks in Modern Pharmaceutical Supply Chains: A Focus on Automated Insights and Decision-Making. 
South Eastern European Journal of Public Health, 20–45. https://doi.org/10.70135/seejph.vi.4441 

[16] Burugulla, J. K. R. (2024). The Future of Digital Financial Security: Integrating AI, Cloud, and Big Data 
for Fraud Prevention and Real Time Transaction Monitoring in Payment Systems. MSW Management Journal, 
34(2), 711-730. 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024;Vol 13 :Issue 8 

www.healthinformaticsjournal.com 

Open Access 

5010 

 

 

[17] Chaitran Chakilam, Dr. P.R. Sudha Rani. (2024). Designing AI-Powered Neural Networks for Real-Time 
Insurance Benefit Analysis and Financial Assistance Optimization in Healthcare Services. South Eastern European 
Journal of Public Health, 974–993. https://doi.org/10.70135/seejph.vi.4603 

[18] Dheeraj Kumar Dukhiram Pal, Venkat Rama Raju Alluri, Shashi Thota, Venkata Sri Manoj Bonam, 
Subrahmanyasarma Chitta, & Mahammad Shaik. (2024). AIOps: Integrating AI and Machine Learning into IT 
Operations. Australian Journal of Machine Learning Research & Applications, 4(1), 1-23. 
https://ajmlra.org/index.php/publication/article/view/68  

[19] Somepalli, S., Korada, L., & Sikha, V. K. Leveraging AI and ML Tools in the Utility Industry for 
Disruption Avoidance and Disaster Recovery. 

[20] Maguluri, K. K., Pandugula, C., Kalisetty, S., & Mallesham, G. (2022). Advancing Pain Medicine with AI 
and Neural Networks: Predictive Analytics and Personalized Treatment Plans for Chronic and Acute Pain 
Managements. Journal of Artificial Intelligence and Big Data, 2(1), 112–126. Retrieved from 
https://www.scipublications.com/journal/index.php/jaibd/article/view/1201 

[21] Annapareddy, V. N., & Seenu, A. Generative AI in Predictive Maintenance and Performance Enhancement 
of Solar Battery Storage Systems. 

[22] Komaragiri, V. B. (2024). Data-Driven Approaches to Battery Health Monitoring in Electric Vehicles 
Using Machine Learning. International Journal of Scientific Research and Management (IJSRM), 12(01), 1018-
1037. 

[23] Challa, S. R. (2022). Optimizing Retirement Planning Strategies: A Comparative Analysis of Traditional, 
Roth, and Rollover IRAs in LongTerm Wealth Management. Universal Journal of Finance and Economics, 2(1), 
1276. Retrieved from https://www.scipublications.com/journal/index.php/ujfe/article/view/1276 

[24] Data Engineering Solutions: The Impact of AI and ML on ERP Systems and Supply Chain Management. 
(2024). In Nanotechnology Perceptions (Vol. 20, Issue S9). Rotherham Press. https://doi.org/10.62441/nano-
ntp.v20is9.47 

[25] Kannan, S. (2023). The Convergence of AI, Machine Learning, and Neural Networks in Precision 
Agriculture: Generative AI as a Catalyst for Future Food Systems. In Journal for ReAttach Therapy and 
Developmental Diversities. Green Publication. https://doi.org/10.53555/jrtdd.v6i10s(2).3451 

[26] Sambasiva Rao Suura  (2024) Generative AI Frameworks for Precision Carrier  Screening:  Transforming  
Genetic  Testing  in  Reproductive  Health.  Frontiers in Health Informa 4050-4069 

[27] Pandugula, C., Kalisetty, S., & Polineni, T. N. S. (2024). Omni-channel Retail: Leveraging Machine 
Learning for Personalized Customer Experiences and Transaction Optimization. Utilitas Mathematica, 121, 389-
401. 

[28] Nuka, S. T. (2024). The Future of AI Enabled Medical Device Engineering: Integrating Predictive 
Analytics, Regulatory Automation, and Intelligent Manufacturing. MSW Management Journal, 34(2), 731-748. 

[29] Malempati, M. (2022). Machine Learning and Generative Neural Networks in Adaptive Risk 
Management: Pioneering Secure Financial Frameworks. In Kurdish Studies. Green Publication. 
https://doi.org/10.53555/ks.v10i2.3718 

[30] Challa, K. (2024). Neural Networks in Inclusive Financial Systems: Generative AI for Bridging the Gap 
Between Technology and Socioeconomic Equity. MSW Management Journal, 34(2), 749-763. 

[31] Dheeraj Kumar Dukhiram Pal, Venkat Rama Raju Alluri, Shashi Thota, Venkata Sri Manoj Bonam, 
Subrahmanyasarma Chitta, & Mahammad Shaik. (2024). AIOps: Integrating AI and Machine Learning into IT 
Operations. Australian Journal of Machine Learning Research & Applications, 4(1), 1-23. 
https://ajmlra.org/index.php/publication/article/view/68 

[32] Karthik Chava, Dr. P.R. Sudha Rani, (2023) Generative Neural Models in Healthcare Sampling: 
Leveraging AI-ML Synergies for Precision-Driven Solutions in Logistics and Fulfillment. Frontiers in Health 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024;Vol 13 :Issue 8 

www.healthinformaticsjournal.com 

Open Access 

5011 

 

 

Informa (6933-6952) 

[33] Kalisetty, S., Pandugula, C., & Mallesham, G. (2023). Leveraging Artificial Intelligence to Enhance 
Supply Chain Resilience: A Study of Predictive Analytics and Risk Mitigation Strategies. Journal of Artificial 
Intelligence and Big Data, 3(1), 29–45. Retrieved from 
https://www.scipublications.com/journal/index.php/jaibd/article/view/1202 

[34] Burugulla, J. K. R. (2022). The Role of Cloud Computing in Revolutionizing Business Banking Services: 
A Case Study on American Express’s Digital Financial Ecosystem. In Kurdish Studies. Green Publication. 
https://doi.org/10.53555/ks.v10i2.3720 

[35] Madhavaram, C. R., Sunkara, J. R., Kuraku, C., Galla, E. P., & Gollangi, H. K. (2024). The Future of 
Automotive Manufacturing: Integrating AI, ML, and Generative AI for Next-Gen Automatic Cars. In IMRJR (Vol. 
1, Issue 1). Tejass Publishers. https://doi.org/10.17148/imrjr.2024.010103 

[36] Chaitran Chakilam, Dr. Aaluri Seenu, (2024) Transformative Applications of AI and ML in Personalized 
Treatment Pathways: Enhancing Rare Disease Support Through Advanced Neural Networks. Frontiers in Health 
Informa 4032-4049 

[37] Sondinti, L. R. K., Kalisetty, S., Polineni, T. N. S., & abhireddy, N. (2023). Towards Quantum-Enhanced 
Cloud Platforms: Bridging Classical and Quantum Computing for Future Workloads. In Journal for ReAttach 
Therapy and Developmental Diversities. Green Publication. https://doi.org/10.53555/jrtdd.v6i10s(2).3347 

[38] Sikha, V. K. Cloud-Native Application Development for AI-Conducive Architectures. 

[39] Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., Gollangi, H. K. and Rajaram, S. K. (2024) 
Predictive Analytics for Project Risk Management Using Machine Learning. Journal of Data Analysis and 
Information Processing, 12, 566-580. doi: 10.4236/jdaip.2024.124030. 

[40] Maguluri, K. K., Pandugula, C., & Yasmeen, Z. (2024). Neural Network Approaches for Real-Time 
Detection of Cardiovascular Abnormalities. 

[41] Venkata Narasareddy Annapareddy. (2022). Innovative Aidriven Strategies For Seamless Integration Of 
Electric Vehicle Charging With Residential Solar Systems. Migration Letters, 19(6), 1221–1236. Retrieved from 
https://migrationletters.com/index.php/ml/article/view/11618 

[42] International Journal on Recent and Innovation Trends in Computing and CommunicationISSN: 2321-
8169 Volume: 11 Issue: 9Article Received:25July 2023 Revised:12September 2023 Accepted:30September 2023 

[43] Vinay Yandrapalli, et al. (2024). Innovative Logistics: Assessing AI’s Impact on Supply Chain Excellence. 
International Journal on Recent and Innovation Trends in Computing and Communication, 11(9), 4987–4994. 
Retrieved from https://ijritcc.org/index.php/ijritcc/article/view/10155 

[44] Kannan, S. (2022). The Role Of AI And Machine Learning In Financial Services: A Neural Networkbased 
Framework For Predictive Analytics And Customercentric Innovations. Migration Letters, 19(6), 1205-1220. 

[45] Shashi Thota, Subrahmanyasarma Chitta, Vinay Kumar Reddy Vangoor, Chetan Sasidhar Ravi, & 
Venkata Sri Manoj Bonam. (2023). Few-Shot Learning in Computer Vision: Practical Applications and Techniques. 
Human-Computer Interaction Perspectives, 3(1), 29-58. https://tsbpublisher.org/hcip/article/view/83 

[46] Laxminarayana Korada, V. K. S., & Somepalli, S. Finding the Right Data Analytics Platform for Your 
Enterprise. 

[47] Polineni, T. N. S., abhireddy, N., & Yasmeen, Z. (2023). AI-Powered Predictive Systems for Managing 
Epidemic Spread in High-Density Populations. In Journal for ReAttach Therapy and Developmental Diversities. 
Green Publication. https://doi.org/10.53555/jrtdd.v6i10s(2).3374 

[48] Sondinti, L. R. K., & Yasmeen, Z. (2022). Analyzing Behavioral Trends in Credit Card Fraud Patterns: 
Leveraging Federated Learning and Privacy-Preserving Artificial Intelligence Frameworks. 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024;Vol 13 :Issue 8 

www.healthinformaticsjournal.com 

Open Access 

5012 

 

 

[49] Shashi Thota, Subrahmanyasarma Chitta, Venkat Rama Raju Alluri, Vinay Kumar Reddy Vangoor, & 
Chetan Sasidhar Ravi. (2022). MLOps: Streamlining Machine Learning Model Deployment in Production. African 
Journal of Artificial Intelligence and Sustainable Development, 2(2), 186-205. 
https://ajaisd.org/index.php/publication/article/view/37 

[50] Dheeraj Kumar Dukhiram Pal, Jenie London, Ajay Aakula, & Subrahmanyasarma Chitta. (2022). 
Implementing TOGAF for Large-Scale Healthcare Systems Integration. Internet of Things and Edge Computing 
Journal, 2(1), 55-101. https://tsbpublisher.org/iotecj/article/view/77 

[51] Subhash Polineni, T. N., Pandugula, C., & Azith Teja Ganti, V. K. (2022). AI-Driven Automation in 
Monitoring Post-Operative Complications Across Health Systems. Global Journal of Medical Case Reports, 2(1), 
1225. Retrieved from https://www.scipublications.com/journal/index.php/gjmcr/article/view/1225 

[52] Nuka, S. T. (2023). Generative AI for Procedural Efficiency in Interventional Radiology and Vascular 
Access: Automating Diagnostics and Enhancing Treatment Planning. In Journal for ReAttach Therapy and 
Developmental Diversities. Green Publication. https://doi.org/10.53555/jrtdd.v6i10s(2).3449 

[53] Pranadeep Katari, Shashi Thota, Subrahmanyasarma Chitta, Ashok Kumar Pamidi Venkata, & Tanzeem 
Ahmad. (2021). Remote Project Management: Best Practices for Distributed Teams in the Post-Pandemic Era. 
Australian Journal of Machine Learning Research & Applications, 1(2), 145-166. 
https://ajmlra.org/index.php/publication/article/view/82 

[54] Vinay Kumar Reddy Vangoor, Chetan Sasidhar Ravi, Venkata Sri Manoj Bonam, Pranadeep Katari, & 
Subrahmanyasarma Chitta. (2020). Energy-Efficient Consensus Mechanisms for Sustainable Blockchain Networks. 
Journal of Science & Technology, 1(1), 488-509. https://tsbpublisher.org/jst/article/view/71 

[55] Kothapalli Sondinti, L. R., & Yasmeen, Z. (2022). Analyzing Behavioral Trends in Credit Card Fraud 
Patterns: Leveraging Federated Learning and Privacy-Preserving Artificial Intelligence Frameworks. Universal 
Journal of Business and Management, 2(1), 1224. Retrieved from 
https://www.scipublications.com/journal/index.php/ujbm/article/view/1224 

[56] Chitta, S., Yandrapalli, V. K., & Sharma, S. (2024, June). Deep Learning for Precision Agriculture: 
Evaluating CNNs and Vision Transformers in Rice Disease Classification. In 2024 OPJU International Technology 
Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0 (pp. 1-6). IEEE. 

[57] Subrahmanyasarma Chitta, Sai Manoj Yellepeddi, Shashi Thota, & Ashok Kumar Pamidi Venkata. (2019). 
Decentralized Finance (DeFi): A Comprehensive Study of Protocols and Applications. Distributed Learning and 
Broad Applications in Scientific Research, 5, 124-146. https://dlbasr.org/index.php/publication/article/view/9 

[58] Korada, L. Role of Generative AI in the Digital Twin Landscape and How It Accelerates Adoption. J Artif 
Intell Mach Learn & Data Sci 2024, 2(1), 902-906. 

[59] Kothapalli Sondinti, L. R., & Syed, S. (2021). The Impact of Instant Credit Card Issuance and Personalized 
Financial Solutions on Enhancing Customer Experience in the Digital Banking Era. Universal Journal of Finance 
and Economics, 1(1), 1223. Retrieved from 
https://www.scipublications.com/journal/index.php/ujfe/article/view/1223 

[60] Chitta, S., Yandrapalli, V. K., & Sharma, S. (2024, June). Advancing Histopathological Image Analysis: 
A Combined EfficientNetB7 and ViT-S16 Model for Precise Breast Cancer Detection. In 2024 OPJU International 
Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0 (pp. 1-6). 
IEEE. 

[61] Nagesh Boddapati, V. (2023). AI-Powered Insights: Leveraging Machine Learning And Big Data For 
Advanced Genomic Research In Healthcare. In Educational Administration: Theory and Practice (pp. 2849–2857). 
Green Publication. https://doi.org/10.53555/kuey.v29i4.7531 

[62] Pradhan, S., Nimavat, N., Mangrola, N., Singh, S., Lohani, P., Mandala, G., ... & Singh, S. K. (2024). 
Guarding Our Guardians: Navigating Adverse Reactions in Healthcare Workers Amid Personal Protective 
Equipment (PPE) Usage During COVID-19. Cureus, 16(4). 

[63] Subrahmanyasarma Chitta, Justin Crawly, Sai Ganesh Reddy, & Dheeraj Kumar. (2019). Balancing data 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024;Vol 13 :Issue 8 

www.healthinformaticsjournal.com 

Open Access 

5013 

 

 

sharing and patient privacy in interoperable health systems . Distributed Learning and Broad Applications in 
Scientific Research, 5, 886-925. https://dlbasr.org/index.php/publication/article/view/7  

[64] Vankayalapati, R. K., Edward, A., & Yasmeen, Z. (2021). Composable Infrastructure: Towards Dynamic 
Resource Allocation in Multi-Cloud Environments. Universal Journal of Computer Sciences and Communications, 
1(1), 1222. Retrieved from https://www.scipublications.com/journal/index.php/ujcsc/article/view/1222 

[65] Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 
20(9), 6413. 

[66] Siramgari, D., & Sikha, V. K. From Raw Data to Actionable Insights: Leveraging LLMs for Automation. 

[67] Murali Malempati. (2022). AI Neural Network Architectures For Personalized Payment Systems: 
Exploring Machine Learning’s Role In Real-Time Consumer Insights. Migration Letters, 19(S8), 1934–1948. 
Retrieved from https://migrationletters.com/index.php/ml/article/view/11632 

[68] Challa, K. (2023). Transforming Travel Benefits through Generative AI: A Machine Learning Perspective 
on Enhancing Personalized Consumer Experiences. In Educational Administration: Theory and Practice. Green 
Publication. https://doi.org/10.53555/kuey.v29i4.9241 

[69] Chava, K. (2023). Revolutionizing Patient Outcomes with AI-Powered Generative Models: A New 
Paradigm in Specialty Pharmacy and Automated Distribution Systems. In Journal for ReAttach Therapy and 
Developmental Diversities. Green Publication. https://doi.org/10.53555/jrtdd.v6i10s(2).3448 

[70] Chaitran Chakilam. (2022). Integrating Generative AI Models And Machine Learning Algorithms For 
Optimizing Clinical Trial Matching And Accessibility In Precision Medicine. Migration Letters, 19(S8), 1918–1933. 
Retrieved from https://migrationletters.com/index.php/ml/article/view/11631 

[71] Komaragiri, V. B., Edward, A., & Surabhi, S. N. R. D. Enhancing Ethernet Log Interpretation And 
Visualization. 

[72] Sai Teja Nuka (2023) A Novel Hybrid Algorithm Combining Neural Networks And Genetic Programming 
For Cloud Resource Management. Frontiers in Health Informa 6953-6971 

[73] Kishore Challa,. (2022). Generative AI-Powered Solutions for Sustainable Financial Ecosystems: A 
Neural Network Approach to Driving Social and Environmental Impact. Mathematical Statistician and Engineering 
Applications, 71(4), 16643–16661. Retrieved from https://philstat.org/index.php/MSEA/article/view/2956 

[74] Sikha, V. K. (2024). Developing a BCDR Solution with Azure for Cloud-Based Applications Across 
Geographies. North American Journal of Engineering Research, 5(2). 

[75] Karthik Chava. (2022). Redefining Pharmaceutical Distribution With AI-Infused Neural Networks: 
Generative AI Applications In Predictive Compliance And Operational Efficiency. Migration Letters, 19(S8), 1905–
1917. Retrieved from https://migrationletters.com/index.php/ml/article/view/11630 

[76] Korada, L., Sikha, V. K., & Siramgari, D. (2024). AI & Accessibility: A Conceptual Framework for 
Inclusive Technology. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 983. 

[77] Venkata Bhardwaj Komaragiri. (2022). AI-Driven Maintenance Algorithms For Intelligent Network 
Systems: Leveraging Neural Networks To Predict And Optimize Performance In Dynamic Environments. Migration 
Letters, 19(S8), 1949–1964. Retrieved from https://migrationletters.com/index.php/ml/article/view/11633 

[78] Sikha, V. K., Siramgari, D., & Korada, L. (2023). Mastering Prompt Engineering: Optimizing Interaction 
with Generative AI Agents. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-E117. DOI: doi. 
org/10.47363/JEAST/2023 (5) E117 J Eng App Sci Technol, 5(6), 2-8. 

[79] Nuka, S. T. (2022). The Role of AI Driven Clinical Research in Medical Device Development: A Data 
Driven Approach to Regulatory Compliance and Quality Assurance. Global Journal of Medical Case Reports, 2(1), 
1275. Retrieved from https://www.scipublications.com/journal/index.php/gjmcr/article/view/1275 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024;Vol 13 :Issue 8 

www.healthinformaticsjournal.com 

Open Access 

5014 

 

 

[80] Sikha, V. K., & Somepalli, S. (2023). Cybersecurity in Utilities: Protecting Critical Infrastructure from 
Emerging Threats. Journal of Scientific and Engineering Research, 10(12), 233-242. 

[81] Chakilam, C. (2022). Generative AI-Driven Frameworks for Streamlining Patient Education and 
Treatment Logistics in Complex Healthcare Ecosystems. In Kurdish Studies. Green Publication. 
https://doi.org/10.53555/ks.v10i2.3719 

[82] Sikha, V. K. (2023). The SRE Playbook: Multi-Cloud Observability, Security, and Automation (Vol. 2, 
No. 2, pp. 2-7). SRC/JAICC-136. Journal of Artificial Intelligence & Cloud Computing DOI: doi. 
org/10.47363/JAICC/2023 (2) E136 J Arti Inte & Cloud Comp. 

[83] Komaragiri, V. B., & Edward, A. (2022). AI-Driven Vulnerability Management and Automated Threat 
Mitigation. International Journal of Scientific Research and Management (IJSRM), 10(10), 981-998.  
 

[84] Dheeraj Kumar Dukhiram Pal, Subrahmanyasarma Chitta, & Vipin Saini. (2018). Addressing legacy 
system challenges through EA in healthcare. Distributed Learning and Broad Applications in Scientific Research, 4, 
180-219. https://dlbasr.org/index.php/publication/article/view/2 

[85] Tanzeem Ahmad, Chetan Sasidhar Ravi, Subrahmanyasarma Chitta, Sai Manoj Yellepeddi, & Ashok 
Kumar Pamidi Venkata. (2018). Hybrid Project Management: Combining Agile and Traditional Approaches. 
Distributed Learning and Broad Applications in Scientific Research, 4, 122-145. 
https://dlbasr.org/index.php/publication/article/view/15 

[86] Dheeraj Kumar Dukhiram Pal, Vipin Saini, & Subrahmanyasarma Chitta. (2017). Role of data stewardship 
in maintaining healthcare data integrity. Distributed Learning and Broad Applications in Scientific Research, 3, 34-
68. https://dlbasr.org/index.php/publication/article/view/20 

[87] Balaji Adusupalli. (2022). The Impact of Regulatory Technology (RegTech) on Corporate Compliance: A 
Study on Automation, AI, and Blockchain in Financial Reporting. Mathematical Statistician and Engineering 
Applications, 71(4), 16696–16710. Retrieved from https://philstat.org/index.php/MSEA/article/view/2960 

[88] AI-Powered Revenue Management and Monetization: A Data Engineering Framework for Scalable Billing 
Systems in the Digital Economy  . (2025). MSW Management Journal, 34(2), 776-787. 

[89] Agentic AI in Financial Decision-Making: Enhancing Customer Risk Profiling, Predictive Loan 
Approvals, and Automated Treasury Management in Modern Banking. (2025). MSW Management Journal, 34(2), 
832-843. 

[90] The Role of Internal Audit in Enhancing Corporate Governance: A Comparative Analysis of Risk 
Management and Compliance Strategies. (2025). MSW Management Journal, 34(2), 818-831. 

[91] Pallav Kumar Kaulwar. (2023). Tax Optimization and Compliance in Global Business Operations: 
Analyzing the Challenges and Opportunities of International Taxation Policies and Transfer Pricing. International 
Journal of Finance (IJFIN) - ABDC Journal Quality List, 36(6), 150-181.   

 


