Open Access

Role Of Hiv/Aids Duration And Socio-Ecnomic Factors In Vitamin-D Depletion Among Infected Individuals

Laamia Altuf¹,Ayesha Afzal²,Waqas Ahmad³,Faiza Masood⁴,Shagufta Abbas⁵,Muhammad Muneeb⁶,Muhammad Ahmad Raza⁷

¹Lecturer, Department of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan

²Lecturer, Akhter Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan

³University institute of Public Health, University of Lahore, Pakistan

⁴University institute of Public Health, University of Lahore, Pakistan

⁵University of Home Economics, Lahore, Pakistan

⁶Riphah institute of Pharmaceutical Sciences, Riphah International University, Lahore

⁷Lecturer, Al-Razi Institute, Lahore, Pakistan

Cite this paper as: Laamia Altuf,Ayesha Afzal,Waqas Ahmad,Faiza Masood,Shagufta Abbas,Muhammad Muneeb,Muhammad Ahmad Raza (2024). Role Of Hiv/Aids Duration And Socio-Ecnomic Factors In Vitamin-D Depletion Among Infected Individuals. *Frontiers in Health Informatics*, 13 (8) 3381-3386

Abstract

Objective: To assess socioeconomic status and the duration of HIV/AIDS influence the prevalence and severity of vitamin D deficiency among HIV-infected patients

Method: This cross-sectional study was conducted in the Department of Public Health at the University of Lahore Teaching Hospital, Lahore, Pakistan, between March 14, 2023, and April 30, 2024. The goal was to determine how common vitamin D insufficiency was among people living with HIV. With a 95% confidence level and a 5% margin of error, 200 ELISA-confirmed HIV-positive patients were chosen by a non-probability sequential sampling technique. Patients who met our inclusion requirements gave their informed consent, and a questionnaire was completed after their vitamin-D levels were measured in a blood sample.

Results: A total of 200 HIV/AIDS patients were included in this research. There were 60 (30%) women and 140 (70%) men among them. The patients ranged in age from 20 to 60, with a mean age of 45.0±1.0. Of the participants, the majority (82 or 41%) were in the 18–30 age range. In contrast, 52 people (26%) and 56 people (28%) were older than 52 and between 31 and 50, respectively. There were 45 people with low socioeconomic status (22.5%), 114 people with intermediate socioeconomic status (57%), and 41 people with high socioeconomic status (20.5%). Conclusion: Vitamin D insufficiency is quite common in HIV-positive individuals, it does not significantly correlate with socioeconomic level or length of illness. Given that conventional HIV measures like viral load and CD4 count are not accurate risk indicators, routine screening and prompt investigations for vitamin D levels are crucial. It is advised to take vitamin D supplements, educate patients about sun exposure and dietary sources, and implement national food fortification and public health education programs. Future research should determine suitable cutoff points for 25(OH)D socioeconomic investigate how status and HIV duration affect deficiency Keywords: Socio-ecnomic status, HIV/AIDS, Vitamin-D

Frontiers in Health Informatics ISSN-Online: 2676-7104

2024; Vol 13: Issue 8 Open Access

Inroduction:

In children, vitamin D deficiency causes rickets, and in adults, osteomalacia. In children who are able to stand, rickets causes bone deformities in the lower limbs because of delayed endochondral ossification at the growth plates of long bones, while osteomalacia is characterized by impaired mineralization of osteoid on trabecular and cortical bone surfaces, resulting in wider seams and weakened zones. In addition to clinical deficiency, low vitamin D levels have been associated with an increased risk of osteoporosis, cardiovascular disease, diabetes, and tuberculosis [1-2]. Around the world, estimates of vitamin D inadequacy among people with HIV range from 29% to 80%. It is a prevalent anomaly that might function as a stand-alone predictor of HIV progression. Maintaining extra-skeletal and musculoskeletal health, including immune system and cardiovascular functioning, requires the identification, treatment, and management of vitamin D insufficiency [3]. Vitamin D insufficiency has been linked to a number of diseases, including bone abnormalities, in HIV-infected people [4]. According to certain research, people with HIV may have a greater frequency of osteoporosis and osteopenia than those in the general population of the same age and gender. Therefore, it is crucial to address changes in bone metabolism in HIV patients [5–6].

According to published research, people with HIV were also lacking in this vitamin. Less vitamin-D concentrations or amounts were associated with larger or higher cIMT, a metric or indicator of subclinical atherosclerosis, in two recent studies of HIV-infected individuals [7,8]. Amazingly high rates and quantities of the main-circulating metabolite of vitamin D in the general population's blood have been found in recent years. Lack of the vitamin has been linked to allcause mortality, osteoporosis, CVD, and insulin resistance. HIV infection is associated with a number of variables that may contribute to lower 25(OH) D levels [9]. Therefore, it has become routine practice to regularly check for low levels of 25(OH) D and to supplement those who do not get enough of it. According to the Institute of Medicine, taking this vitamin orally on a daily basis up to 2000–4000 international units is safe[10]. Vitamin-D deficiency was also found in 107 out of 121 HIV-positive individuals (88.4%), according to one study[11]. Income is only one aspect of socioeconomic status (SES); other factors include social class, subjective assessments of social position, educational attainment, and financial stability. In particular, poverty is a complex problem marked by a variety of psychological and physical pressures. Across the lifespan, SES is a constant and accurate predictor of a number of physical and mental health outcomes. HIV is directly linked to social and economic injustices both locally and internationally, as it disproportionately affects those from lower socioeconomic backgrounds. Socioeconomic position has been shown to affect an individual's chance of contracting HIV. Furthermore, the quality of life for those infected with the virus is significantly influenced by socioeconomic status [12]. Likewise, one of the best indicators of vitamin-D inadequacy is socioeconomic status. One significant factor contributing to vitamin-D shortage is household income. Families with lower incomes are more likely to experience vitamin-D scarcity than those with higher incomes because they cannot afford fortified foods and dietary supplements [13]. Lower socioeconomic status was also linked to a higher incidence of vitamin-D deficiency in Chinese women, according a recent study [14]. Assessing blood levels of 25-hydroxyvitamin D [25(OH)D] is one way to determine vitamin D sufficiency. A number of vitamin D supplementation studies and an Institute of Medicine (IOM) comprehensive review [15] have suggested that blood 25(OH)D levels should be maintained between 50 and 100 nmol/L (20-40 ng/mL), while others advocate a range of 75 to 125 nmol/L (30-50 ng/mL). It is now believed that the range of 75-100 nmol/L (30-40 ng/mL) is well recognized. A 25(OH)D level of less than 20 ng/mL is deemed inadequate for bone health. Vitamin D deficiency is defined in this study as a serum 25(OH)D level of less than 50 nmol/L. Mostly based on studies about bone health, the IOM advises keeping levels above 50 nmol/L (20 ng/mL) [16]. Furthermore, in order to lower the risk of fractures and falls, groups like the American Geriatric Society (AGS), the National Osteoporosis Foundation, the International Osteoporosis Foundation (IOF), and the Endocrine Society recommend that older adults maintain a minimum 25(OH)D level of 75 nmol/L (30 ng/mL) [17]. The objective of this study was to assess how socioeconomic status affected vitamin D insufficiency in clinical patients with HIV.

Open Access

Methodology

This cross-sectional study was conducted in the Department of Public Health at the University of Lahore Teaching Hospital, Lahore, Pakistan, between March 14, 2023, and April 30, 2024. The goal was to determine how common vitamin D insufficiency was among people living with HIV. With a 95% confidence level and a 5% margin of error, 200 ELISA-confirmed HIV-positive patients were chosen by a non-probability sequential sampling technique. Patients who met our inclusion requirements gave their informed consent, and a questionnaire was completed after their vitamin-D levels were measured in a blood sample. According to an operational definition, those with vitamin-D levels < 50 nmol/l (20 ng/ml) were deemed vitamin-D deficient. Those with vitamin-D deficiencies were treated in accordance with hospital guidelines. Participants were divided into three socioeconomic classes: Low, Middle/Average, and High class . The collected data was input into SPSS v23.0 and examined for findings and descriptions. Factors such as SES, vitamin D insufficiency, and gender were expressed as percentages and frequencies. Age, gender, and socioeconomic level were used to stratify the data. Chi-Square testing was used for post-stratification, with a p-value of less than 0.05 considered significant.

Results

A total of 200 HIV/AIDS patients were included in this research. There were 60 (30%) women and 140 (70%) men among them. The patients ranged in age from 20 to 60, with a mean age of 45.0±1.0. Of the participants, the majority (82 or 41%) were in the 18–30 age range. In contrast, 52 people (26%) and 56 people (28%) were older than 52 and between 31 and 50, respectively. There were 45 people with low socioeconomic status (22.5%), 114 people with intermediate socioeconomic status (57%), and 41 people with high socioeconomic status (20.5%). Table 1

Variables **Category Name Frequency** Percentage (%) Gender Male 140 70 60 30 Female 18-30 years 82 41 Age 31-50 years 28 56 >51 years 52 26 <20,000 PKR Socio-45 22.5 21,000-50,000 PKR Ecnomic 114 57 Status >51,000 PKR 41 20.5

Table 1: Socio-Demolgraphic Chracters

A chi-square stratification of vitamin D insufficiency by socioeconomic status revealed a negligible difference between the two variables (p=0.070). Table 2

Table 2: Vitamin-D Deficiency with socio-ecnomic status

Socio-ecnomic status	Vitamin-D	deficiency	Total	P-value
	Yes	No		
<20,000 PKR	28(62.2%)	17(37.8%)	45(100%)	
21,000-50,000 PKR	85(74.6%)	29(25.4%)	114(100%)	0.070
>51,000 PKR	22(53.7%)	19(46.3%)	41(100%)	
Total	135(67.5%)	65(32.5%)	200(100%)	

Discussion

Vitamin-D also plays a function in slowing the advancement of HIV disease and preventing death due to its extensive engagement and contribution throughout the whole immune system, even in patients starting antiretroviral medication (ART). The optimal vitamin D status is indicated by blood concentrations of 25-OHD of 75 nmol/l (30 µg/l) and above;

Frontiers in Health Informatics ISSN-Online: 2676-7104

2024; Vol 13: Issue 8 Open Access

in this study, we utilized a level of vitamin D of ≤50 nmol/L to indicate dearth or shortage [18]. In this study, 67.5% of participants had low levels of vitamin D. In line with the proportion reported in our investigation, another study conducted on 1077 HIV-positive individuals in the southern part of London indicated that 73.5% of them had vitamin D deficiency (<50 nmol/L) [19]. According to the findings of another study, 67% of people had vitamin-D deficiencies (<50 nmol/L), which is consistent with our findings [20]. Our findings are consistent with another study that found that 80% of infected individuals had inadequate vitamin D [21]. The prevalence of low vitamin D in people with HIV varies from 24 to 72 percent in various topographical locations, age groups, and climates [22]. In another study, 60.2% of participants had a shortage of the aforementioned vitamin, and the blood mean for 25(OH) D was 20.7 ng/mL. Aside from vitamin D, pathological conditions can also result from inadequate consumption of calcium and phosphorous[23]. Vitamin D insufficiency was detected in 107 out of 121 HIV-positive people (88.4%) in a Belgian research [11]. Another research found that non-white ethnic groups had a greater incidence of vitamin D insufficiency and that the spring and winter seasons were associated with higher rates of deficiency [24]. Lower socioeconomic status (SES) has been associated with lower dietary and supplementary vitamin D consumption, as well as decreased outdoor exposure and physical activity, all of which diminish UVB exposure. People in underprivileged regions were over twice as likely to be vitamin D deficient as people in wealthy areas [25]. According to Zhang et al., who also found an insignificant association between SES and vitamin D deficiency, our study's chi-square test showed no statistically significant difference between socioeconomic status and vitamin D deficiency (p=0.070). These findings are consistent with previous research that suggests that although low SES may independently increase the likelihood of severe vitamin D deficiency, its overall impact on deficiency rates remains complex. Another study also found no difference in the prevalence of vitamin D deficiency between those with below- and above-average SES (P = 0.876) [26].

Conclusion

Vitamin D insufficiency is quite common in HIV-positive individuals, it does not significantly correlate with socioeconomic level or length of illness. Given that conventional HIV measures like viral load and CD4 count are not accurate risk indicators, routine screening and prompt investigations for vitamin D levels are crucial. It is advised to take vitamin D supplements, educate patients about sun exposure and dietary sources, and implement national food fortification and public health education programs. Future research should determine suitable cutoff points for 25(OH)D levels and investigate how socioeconomic status and HIV duration affect deficiency rates.

References

- 1-Holick MF. Vitamin D deficiency. New England journal of medicine. 2007 Jul 19;357(3):266-81.
- 2-Pearce SH, Cheetham TD. Diagnosis and management of vitamin D deficiency. Bmj. 2010 Jan 11;340.
- 3-Chang SW, Lee HC. Vitamin D and health-The missing vitamin in humans. Pediatrics & Neonatology. 2019 Jun 1;60(3):237-44.
- 4-Piloya TW, Bakeera–Kitaka S, Kisitu GP, Idro R, Cusick SE. Vitamin D status and associated factors among HIV-infected children and adolescents on antiretroviral therapy in Kampala, Uganda. Plos one. 2021 Jun 24;16(6):e0253689. 5-Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. European journal of rheumatology. 2017 Mar;4(1):46.
- 6-Majeed F, Saleem J, Ullah K, Rafique S, Bukhari GM, Dilnawaz A, Tariq A, Shahbaz F. The Effectiveness of Different Doses or Types of Vitamin D Supplementation in HIV-Positive Individuals in Lahore: Effectiveness of Vitamin D Supplementation in HIV-Positive Individuals. Pakistan Journal of Health Sciences. 2023 Apr 30:43-8.
- 7-Lake JE, Adams JS. Vitamin D in HIV-infected patients. Current Hiv/aids Reports. 2011 Sep;8:133-41.
- 8-Viard JP, Souberbielle JC, Kirk O, Reekie J, Knysz B, Losso M, Gatell J, Bogner JR, Lundgren JD, Mocroft A, EuroSIDA Study Group. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. Aids. 2011 Jun 19;25(10):1305-15.

Open Access

- 9-Dao CN, Patel P, Overton ET, Rhame F, Pals SL, Johnson C, Bush T, Brooks JT, Study to Understand the Natural History of HIV and AIDS in the Era of Effective Therapy (SUN) Investigators. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clinical Infectious Diseases. 2011 Feb 1;52(3):396-405.
- 10-Adeyemi OM, Agniel D, French AL, Tien PC, Weber K, Glesby MJ, Villacres MC, Sharma A, Merenstein D, Golub ET, Meyer W. Vitamin D deficiency in HIV-infected and HIV-uninfected women in the United States. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2011 Jul 1;57(3):197-204.
- 11-Overton ET, Yin MT. The rapidly evolving research on vitamin D among HIV-infected populations. Current infectious disease reports. 2011 Feb;13:83-93.
- 12-Mehta S, Fawzi W. Effects of vitamins, including vitamin A, on HIV/AIDS patients. Vitamins & Hormones. 2007 Jan 1;75:355-83.
- 13-Allavena C, Delpierre C, Cuzin L, Rey D, Viget N, Bernard J, Guillot P, Duvivier C, Billaud E, Raffi F. High frequency of vitamin D deficiency in HIV-infected patients: effects of HIV-related factors and antiretroviral drugs. Journal of Antimicrobial Chemotherapy. 2012 Sep 1;67(9):2222-30.
- 14-Lips P, Cashman KD, Lamberg-Allardt C, Bischoff-Ferrari HA, Obermayer-Pietsch B, Bianchi ML, Stepan J, El-Hajj Fuleihan G, Bouillon R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. European journal of endocrinology. 2019 Apr;180(4):P23-54.
- 15-Mehta S, Giovannucci E, Mugusi FM, Spiegelman D, Aboud S, Hertzmark E, Msamanga GI, Hunter D, Fawzi WW. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PloS one. 2010 Jan 19;5(1):e8770.
- 16-Wang Y, Huang X, Wu Y, Li A, Tian Y, Ren M, Li Z, Zhang T, Wu H, Wang W. Increased risk of vitamin D deficiency among HIV-infected individuals: a systematic review and meta-analysis. Frontiers in Nutrition. 2021 Aug 18:8:722032.
- 17-Dawson-Hughes B, Mithal A, Bonjour JP, Boonen S, Burckhardt P, Fuleihan GH, Josse RG, Lips PT, Morales-Torres J, Yoshimura N. IOF position statement: vitamin D recommendations for older adults. Osteoporosis international. 2010 Jul;21(7):1151-4.
- 18-Parva NR, Tadepalli S, Singh P, Qian A, Joshi R, Kandala H, Nookala VK, Cheriyath P. Prevalence of vitamin D deficiency and associated risk factors in the US population (2011-2012). Cureus. 2018 Jun;10(6).
- 19-Welz T, Childs K, Ibrahim F, Poulton M, Taylor CB, Moniz CF, Post FA. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. Aids. 2010 Jul 31;24(12):1923-8.
- 20-Rosenvinge MM, Gedela K, Copas AJ, Wilkinson A, Sheehy CA, Bano G, Hay PE, Pakianathan MR, Sadiq ST. Tenofovir-linked hyperparathyroidism is independently associated with the presence of vitamin D deficiency. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2010 Aug 15;54(5):496-9.
- 21-Sudfeld CR, Duggan C, Aboud S, Kupka R, Manji KP, Kisenge R, Fawzi WW. Vitamin D status is associated with mortality, morbidity, and growth failure among a prospective cohort of HIV-infected and HIV-exposed Tanzanian infants. The Journal of nutrition. 2015 Jan 1;145(1):121-7.
- 22-Hsieh E, Yin MT. Continued interest and controversy: vitamin D in HIV. Current Hiv/aids Reports. 2018 Jun;15:199-211.
- 23-AlFaris NA, AlKehayez NM, AlMushawah FI, AlNaeem AN, AlAmri ND, AlMudawah ES. Vitamin D deficiency and associated risk factors in women from Riyadh, Saudi Arabia. Scientific reports. 2019 Dec 30;9(1):20371.
- 24-Ford L, Graham V, Wall A, Berg J. Vitamin D concentrations in an UK inner-city multicultural outpatient population. Annals of clinical biochemistry. 2006 Nov 1;43(6):468-73.

Open Access

25-Laird E, O'Halloran AM, Carey D, Healy M, O'Connor D, Moore P, Shannon T, Molloy AM, Kenny RA. The prevalence of vitamin D deficiency and the determinants of 25 (OH) D concentration in older Irish adults: data from The Irish Longitudinal Study on Ageing (TILDA). The Journals of Gerontology: Series A. 2018 Mar 14;73(4):519-25. 26-Scully H, Laird E, Healy M, Crowley V, Walsh JB, McCarroll K. Low socioeconomic status predicts vitamin D status in a cross-section of Irish children. Journal of Nutritional Science. 2022 Jan;11:e61.