Simultaneous Quantification of Luteolin and Curcumin in Herbal Supplements Using RP-HPLC for Addressing Nutritional Deficiencies.

Dr. Karavadi Thejomoorthy¹, Deshpande Padmanabh Bhagwan², Sheela Shivaji Thorat³, Dr. Mausami Chandrakantbhai Vaghela⁴, Sneha B. Surkar⁵, Junmoni Nath⁶, Richa Saxena⁷

- 1. Principal, Malineni Lakshmaiah College of Pharmacy, Kanumalla, singarayakonda, Vidyanagar, Mulaguntapadu, Singarayakonda, Prakasam, A.P-523101 thejjo1974@gmail.com
- 2. Assistant Professor, All India Shri Shivaji Memorial Society's College of Pharmacy, Kennedy Road Pune-411001 padmanabh77@yahoo.co.in
 - 3. S.D.Patil Institute of Pharmacy, Urun-Islampur ssheelathorat@gmail.com
- 4. Assistant Professor, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot mausami 2123@yahoo.com
 - 5. Associate Professor, Sabarmati University, Ahmedabad, Gujarat sneha.surkar@gmail.com
 - 6. Assistant professor, Department of Pharmaceutics, Girijananda Chowdhury University, Assam junmoninath2014@gmail.com
- 7. Assistant Professor, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, UP, India. richasaxena8449@gmail.com

*Correspondence author:

Gaurav Patel*
Manager, Analytical Chemistry, Sigmapharm Laboratories, PA, USA, gaurav84patel@gmail.com

Cite this paper as: Dr. Karavadi Thejomoorthy, Deshpande Padmanabh Bhagwan, Sheela Shivaji Thorat, Dr. Mausami Chandrakantbhai Vaghela, Sneha B. Surkar, Junmoni Nath, Richa Saxena (2024), Simultaneous Quantification of Luteolin and Curcumin in Herbal Supplements Using RP-HPLC for Addressing Nutritional Deficiencies.. *Frontiers in Health Informatics*, Vol.13, No.8, 2385-2394

Abstract

Background: Medicinal plants are rich sources of bioactive compounds, primarily secondary metabolites, contributing to their therapeutic and nutritional properties. Moringa oleifera and Curcuma longa are widely recognised for their high nutritional value, with luteolin (a flavonoid) and curcumin (a polyphenol) as their primary active constituents. These compounds possess antioxidant and anti-inflammatory properties, effectively addressing nutritional deficiencies.

Objective: This study aimed to develop and validate a Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) method for simultaneously estimating luteolin and curcumin in herbal formulations used for nutritional supplementation.

Methods: Herbal tablet and granule formulations containing Moringa oleifera and Curcuma longa extracts were prepared. The RP-HPLC method was optimized and validated according to ICH guidelines, evaluating parameters such as precision, accuracy, linearity, and robustness. The formulations' physicochemical parameters were also assessed.

Results: The developed RP-HPLC method demonstrated excellent precision, accuracy, and linearity for simultaneously estimating luteolin and curcumin. The herbal formulations exhibited acceptable physicochemical properties, and the presence of luteolin and curcumin in significant quantities was confirmed.

Conclusion: The validated RP-HPLC method provides a reliable and robust approach for the quality control and standardization of herbal formulations containing luteolin and curcumin. These formulations show potential as effective nutritional supplements, suitable for all age groups, supporting their use in addressing nutritional deficiencies.

.Keywords: Malnutrition, Moringa oleifera, Curcuma longa, RP-HPLC, Analytical method validation

Introduction

Nutritional deficiencies are a global health concern, leading to various chronic diseases and impaired physiological functions [1]. The increasing interest in natural and plant-based remedies has highlighted the importance of medicinal plants as a source of bioactive compounds with both therapeutic and nutritional benefits [2]. These plants owe their medicinal properties to secondary metabolites, such as flavonoids, polyphenols, and other phytochemicals, which exhibit antioxidant, anti-inflammatory, and immunomodulatory activities [3]. Moringa oleifera (commonly known as the "drumstick tree" or "miracle tree") and Curcuma longa (turmeric) are two widely studied medicinal plants recognized for their exceptional nutritional and medicinal properties [4]. Moringa oleifera is a rich source of vitamins, minerals, and antioxidants, with luteolin being one of its significant bioactive components [5]. Similarly, Curcuma longa contains curcumin, a polyphenolic compound with potent antioxidant and antiinflammatory properties [6]. Combining these plants in herbal formulations offers a promising approach to combat nutritional deficiencies while promoting overall health [7]. Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) is a widely used analytical technique for estimating bioactive compounds due to its accuracy, precision, and sensitivity [8]. However, the simultaneous quantification of luteolin and curcumin in complex herbal formulations remains challenging [9]. The present study focuses on developing and validating an RP-HPLC method for the simultaneous estimation of luteolin and curcumin in herbal formulations. This work aims to establish a standardized analytical approach for quality control and highlight these formulations' potential as effective nutritional supplements [10].

Material and Methods

Materials

The Moringa leaf powder was purchased from Shashwat herbals Pvt. Ltd. PVP K30, isopropyl alcohol, talc, and magnesium stearate were purchased from chemdyes ltd. Luteolin marker was given as gift sample by Dr. Mamta Shah (L M College of pharmacy) and curcumin was purchased from Dutt enterprise, Nadiad. Acetonitrile and Methanol (Merck) used of HPLC grade.

Methods

Two herbal formulations were developed. A herbal tablet from *Moringa oleifera* leaf powder and herbal granules from *Moringa oleifera* leaf powder, *Curcuma longa* powder Both the formulations were prepared by using 3² factorial design and optimized formula were selected for HPLC analysis.

Selection of Analytical wavelength

For selection of wavelength, working standards of Luteolin (10 $\mu g/ml$) and Betainine (10 $\mu g/ml$) were prepared using methanol as solvent. They were scanned in UV range of 200 nm – 800 nm and overlapped.

Instrumentation

The present RP-HPLC method was developed sing an Agilent Technologies Infinity 1200. Separation was achieved on HYPERSIL ODS C1₈ (250 mm x 4.6 mm) column at ambient temperature in isocratic mode with mixture of Acetonitrile: Methanol: 1.5% v/v acetic acid (45:30:25 v/v) at flow rate of 1ml/min.

2.3 Preparation of standard solutions

Preparation of standard working solution of Luteolin and Curcumin (For selection of analytical wavelength) For the preparation of standard stock solution of Luteolin, accurately weigh 10 mg of Luteolin in 100 ml volumetric flask and dilute it with methanol up to the mark (100 μ g/ml). Take 1 ml from above solution and further dilute it with mobile phase in 10 ml volumetric flask (10 μ g/ml). In similar way 10 mg of Curcumin was weighed and diluted to 100 ml with methanol (100 μ g/ml) and was further diluted with mobile phase to give final concentration of 10 μ g/ml. Preparation of stock solution (For chromatographic development)

A stock solution of the mixture was prepared by diluting accurately weighed 10 mg each of Luteolin and Curcumin into 100 ml volumetric flask using methanol (100 μ g/ml). 10 μ l from above prepared solution was further diluted using mobile phase into 10 ml volumetric flask which contains final concentration of 100 ng/ml of Luteolin and Curcumin each.

Standard solution

Tablet: 1 prepared tablet was crushed and transferred into 10 ml volumetric flask and volume make up with

methanol. Solution was sonicated under heating conditions and filtered through 0.45 µm filter paper. Further, 1 ml from the filtrate was transferred to 10 ml volumetric flask and volume make up with mobile phase. The prepared final solution was injected in HPLC in developed chromatographic conditions.

Syrup: 5 ml prepared syrup was transferred into 10 ml volumetric flask and volume make up with methanol. Solution was sonicated under heating conditions and filtered through 0.45 µm filter paper. Further, 1 ml from the filtrate was transferred to 10 ml volumetric flask and volume make up with mobile phase. The prepared final solution was injected in HPLC in developed chromatographic conditions.

Statistical Analysis:

The samples were analyzed in triplicates for and results were averaged. Within day and between days, the accuracy samples were analysed six times and the results were averaged. The extracts from different parts of the plants were analyzed in triplicates and their results were presented as mean \pm standard deviation (SD).

System Suitability Parameters

Solutions of Luteolin and Curcumin (Q+B, $100+100 \mu g/ml$) was injected 3 times for determining System suitability parameters which includes Tailing factor (Tf), Retention time (Rt), Resolution (Rs) and number of theoretical plates. The proposed method was validated by performing linearity, accuracy, precision and limits of detection and quantitation according to ICH guidelines [13].

Analytical Method Validation

Further, the optimized method was validated according to ICHQ2R2 guidelines. The methodology was examined and found to be linear, repeatable, and accurate both between and within individual days. Using triplicate analysis, precision was determined by determining the variation that occurred within and between days. To establish the linearity of the standard solutions, we utilized all six possible concentration levels [14].

Linearity (Standard solutions)

For linearity study, exact weighed amount of L (10 mg), and C (10 mg) was transferred into the volumetric flask (10 ml) and volume was made up to 10 ml with methanol to provide stock solution contained 1000 μ g/ml of L and C each. For further dilution, 1 ml from same solution was transferred to a 10 ml volumetric flask and volume was made up with mobile phase, which gave final stock solution containing 100 ng/ml of L and C each. Different aliquots from this stock solution were transferred to another 10 ml volumetric flask and volume was adjusted up to the mark with mobile phase to have desired solutions contained 100+100, 500+500, 2000+2000, 10,000+10,000 and 20,000+20,000 ng/ml of Luteolin and Curcumin respectively. All above solutions were injected at volume of 20 μ l into column by employing optimized chromatographic conditions.

Repeatability

Standard working solutions of compounds containing L (100 to 20,000 ng/ml) and C (100 to 20,000 ng/ml) were injected into a column with a volume of 20 µl under optimized chromatographic conditions. Each standard mixture was injected five times, and the area of each peak was monitored and measured. Repeatability of each concentration was monitored using RSD.

Limit of Detection and Limit of Quantification

LOD and LOQ were determined using two methods: Visual inspection and Statistical method by utilization of repeatability data. Mean of slope and Standard deviation of response were utilized to calculate LOD and LOQ. LOD and LOQ were experimentally confirmed by dilutions of known concentrations of L and C until the average response was approximately LOD and LOQ were determined using a statistical method and repeatability data.

$$LOD = 3.3 X \left(\frac{\sigma}{\varsigma}\right), \ LOQ = 10 X \left(\frac{\sigma}{\varsigma}\right)$$

Where, σ = Standard deviation of intercept

S = mean of slope

Precision

Precision refers to the degree to which the results of many measurements carried out on the same sample and under the same conditions provide results that are statistically indistinguishable from one another.

Mixture that represents overall range (L and C = 100+100, 2000+2000 and 20000+20000 ng/ml) were analyzed on same day at different time interval for intraday precision. Mixture that represents overall range (L and C = 100+100, 2000+2000 and 20000+20000 ng/ml) were analyzed on different days for inter-day precision.

Robustness

Parameters given below were changed one by one for determination of robustness of the method and the resulting effect was observed by comparing with the standard preparation.

- i) Mobile phase flowrate (± 0.1 mL/min), optimized flowrate was 1.0 mL/min.
- ii) Mobile phase composition (± 2 mL), in optimized ratio
- 3 determinations of Q+B = 2000+2000 ng/mL for each alteration were carried out, and RSD was measured [15-20].

Quantitative determination

Sample preparation for Granules

 $1~\rm gm$ of prepared granules was crushed and transferred into a $10~\rm ml$ volumetric flask, and volume makeup was done with methanol. Sonicate the solution under heating conditions and filter it through $0.45\mu m$ filter paper. Further, $1~\rm ml$ of this filtrate was transferred to a $10~\rm ml$ volumetric flask, and volume make-up was done with the mobile phase. This prepared solution was injected in HPLC under developed chromatographic conditions.

Sample preparation for Tablet

Procedure: 1 prepared tablet was crushed and transferred into 10 ml volumetric flask and volume make up was done with methanol. Sonicate the solution under heating condition and filter it through 0.45μm filter paper. Further, 1 ml from this filtrate was transferred to 10 ml volumetric flask and volume make up was done with mobile phase. This prepared solution was injected in HPLC with well -developed chromatographic conditions ^[21-25].

RESULTS

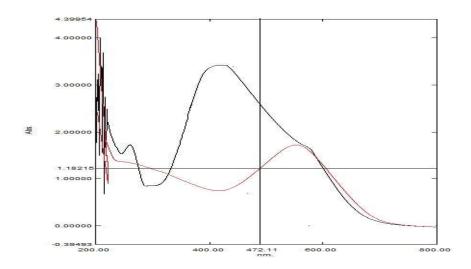
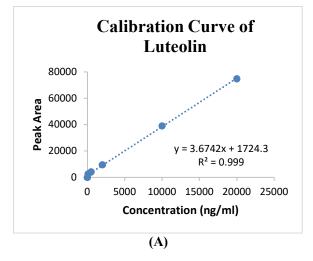


Figure 1: Selection of Analytical wavelength


Table 1: Optimized Chromatographic Conditions

Parameters	Optimized condition
Stationary Phase	HYPERSIL ODS C ₁₈ (250 mm x 4.6 mm)

2024; Vol 13: Issue 8 Open A					
Mobile Phase (v/v)	Acetonitrile: Methanol: Acetic acid (45:30:25 v/v)				
Flow rate (ml/min)	1 ml/min				
Detection Wavelength(nm)	472 nm				
Temperature	Ambient				
Injection Volume (μL)	20 μL				
Run time (minute)	20 minutes				
Retention Time (minute)	L (2.8 min.) and C (7 min.)				

Table 2: System suitability parameter for L+C (100+100 μg/ml)

Parameter	Luteolin			Curcumin		
	Mean	± SD (n=3)	RSD	Mean	± SD (n=3)	RSD
Retention time (R _t)	2.81	0.01	0.11	7.02	0.01	0.03
Tailing Factor	1.23	0.02	1.25	1.52	0.01	0.66
Number of theoretical plates	6286	95.799	1.52	4621	62.98	1.36
Resolution (R _s) (For both L and C)	7.23		0.08		1.15	

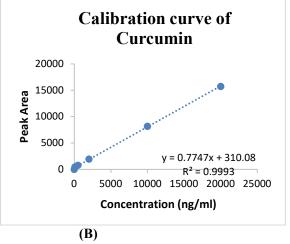
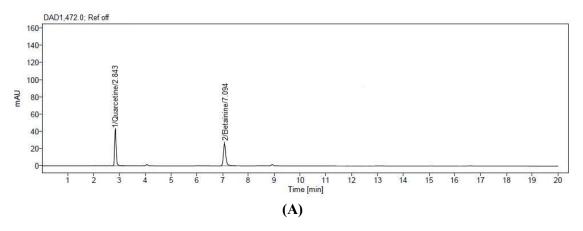



Figure 2: (A) Regression analysis for Luteolin, (B) Regression analysis for Curcumin

Table 3: Summary of All Validation Parameters

		Res	G	
Parameter	Limit	Luteolin	Curcumin	Conclusion
Linearity and Range	$R^2 > 0.995$	0.999 (100-20000 ng/ml)	0.9993 (100-20000 ng/ml)	Method was linear
Repeatability	RSD < 2	0.71-1.02	0.72-1.14	Method was repeatable
Intraday Precision	RSD < 2	0.55-0.73	0.96-1.36	Method was precise
Inter-Day Precision	RSD < 2	0.65-1.10	1.11-1.62	Method was precise
Robustness	RSD < 2	0.26-0.63	0.23-0.73	Method was robust

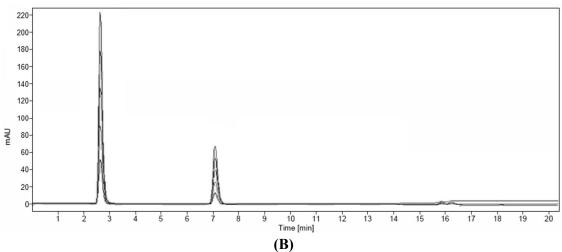


Figure 3: (A) Chromatogram of L+C (100+100 ng/ml), (B) Overlain chromatogram of L and C of Linearity study

Table 4: Limit of detection (LOD) and Limit of quantification (LOQ)

	Luteolin (µg/mL)	Curcumin (ng/mL)
LOD	32.35719	29.91388
LOQ	98.05209	90.64812

Estimation of L and C from herbal formulations

Quantity of L and C were determined from herbal formulations by using AUC and kept the value in equation derived from SCC. Total quantity of L and C found was 800 mg/mL and

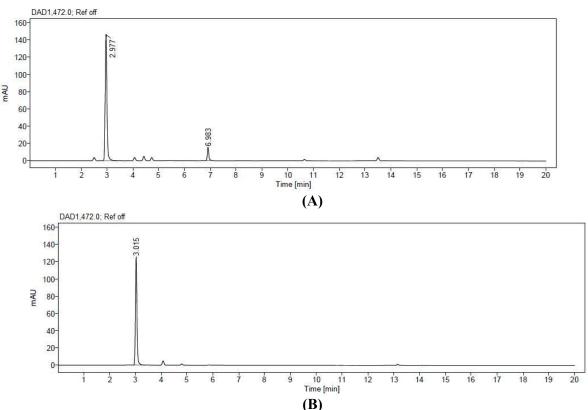


Figure 5: (A) HPLC Chromatogram of Granules, (B) Chromatogram of Tablet Formulation

DISCUSSION

Selection of Analytical wavelength

After overlapping both the scanned spectra of L and C iso-absorptive point was found. The two iso-absorptive points are 400 nm and 550 nm. At 472 nm both the analytes showed significant absorbance, hence 472 nm was selected as detection wavelength for determination of L and C respectively (Fig. 1).

Optimized Chromatographic conditions

Initial trial was performed using Methanol and Acetonitrile as mobile phase in proportion of 50:50 v/v but separation of each drug was not observed. So, acetic acid was introduced into the system with acetonitrile in 45 parts, methanol 30 parts and acetic acid 25 parts (v/v). Flow rate of system was 1ml/min and detection wavelength was selected 472 nm. Proper separation of L and C was observed using above chromatographic system so this system was kept as optimized chromatographic condition. Observed

Retention time for L and C was 2.8 min and 7 min respectively (Table 1).

System Suitability Parameters

After injecting selected solution of mixture 5 times, system suitability parameters showed high column efficiency with great no. of theoretical plates (>2000), Tailing factor for Luteolin was 1.23 ± 0.02 and for Curcumin was 1.52 ± 0.01 observed. Retention time for Luteolin was 2.81 ± 0.01 and for Curcumin was 7.02 ± 0.03 found. Relative Standard Deviation was calculated for each parameter. Calculated RSD was found less than one so we can say that the system is suitable **(Table 2)**.

Validation of Developed Method

The developed Reverse Phase HPLC method has been validated according to ICH-Q2R2 guidelines. The developed method was found to be linear in the concentration range of 100-20000 ng/mL for both Luteolin and Curcumin (Fig. 3). After plotting calibration curve of peak area vs concentration for both drugs, the value of linear regression coefficient was 0.999 and 0.9993 for Luteolin and Curcumin respectively (Fig. 3). Method was found to be repeatable over the range of 100-20000 ng/mL for both Luteolin and Curcumin with %RSD 0.71-1.02 and 0.72-1.14 respectively. When all the mixtures were analysed for all concentration, RSD for each concentration was calculated and it was found to be less than 2. Observed %RSD for inter-day precision was 0.55-0.73 and 0.96-1.36 for L and C respectively. Observed %RSD for inter-day precision was 0.65-1.10 for Q and 1.11-1.62 for B. The method was found to be precise because the %RSD value was less than 2. The developed method was found to be robust because there were no major changes observed in the result when deliberate changes were employed into optimized mobile phase system. The % assay was not performed. Summary of all the validation parameters is highlighted in the Table 4.

Conclusion

The combination of Luteolin and Curcumin is innovative, unique and no analytical method available for the determination of same from single or combination dosage forms, therefor proposed method for determination of Luteolin and Curcumin from herbal dosage forms was developed and the developed method was validated as per ICH-Q2R2 guidelines. From the results we can say that developed method is Precise and follow all the ICH regulations. So proposed methodology can be employed to determine Luteolin and Curcumin from herbal formulation.

**Abbreviations
L – Luteolin
C- Curcumin
LOD- Limit of Detection

LOQ- Limit of Quantification

RSD- Relative Standard Deviation

References

- 1. Fuglie LJ. The Moringa Tree: a local solution to malnutrition. Church World Service in Senegal. 2005; 5:75-83.
- 2. Rockwood JL, Anderson BG, Casamatta DA. Potential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. International Journal of Phytotherapy Research. 2013 Jan;3(2):61-71.
- 3. Aslam M. Mineral composition of Moringa oleifera leaves and pods from different regions of Punjab, Pakistan. Asian Journal of Plant Science. 2005; 4:417-21.
- 4. Singh S, Chaurasia A, Gupta N and Rajput D S (2024) Effect of Formulation parameters on enalapril maleate mucoadhesive buccal tablet using quality by design (QbD) approach. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 40, e20240003. doi: 10.62958/j.cjap.2024.003.
- 5. Singh S, Chaurasia A, Rajput D S and Gupta N (2023) Mucoadhesive drug delivery system and there future prospective: Are a promising approach for effective treatment? Zhongguo Ying Yong Sheng Li Xue Za Zhi. 39, e20230005. doi: 10.62958/j.cjap.2023.005.

6. Vaghela M C, Rathi S, Shirole R L, Verma J, Shaheen, Panigrahi S and Singh S (2024) Leveraging AI and machine learning in six-sigma documentation for pharmaceutical quality assurance. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 40, e20240005. doi: 10.62958/j.cjap.2024.005. PMID: 39019923.Chhikara N, Kushwaha K, Sharma P, Gat Y, Panghal A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food chemistry. 2019 Jan 30; 272:192-200.

- 7. Chauhan S, Chamoli K, Sharma S. Beetroot-A review paper. Journal of Pharmacognosy and Phytochemistry. 2020;9(2S):424-7.
- 8. Pal D, Sahu CK, Haldar A. Bhasma: the ancient Indian nanomedicine. Journal of advanced pharmaceutical technology & research. 2014 Jan;5(1):4.
- 9. Bhokardankar PS, Khobragade PD, Bhatt N, Gawande U, Hawale D, Chaudhary GA. Critical Review of Nanotechnology in Rasshastra Bhasma Medicines from Ayurveda Genre. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal NVEO. 2021 Nov 7:1158-63.
- 10. Pal D, Sahu CK, Haldar A. Bhasma: the ancient Indian nanomedicine. Journal of advanced pharmaceutical technology & research. 2014 Jan;5(1):4.
- 11. Sarkar PK, Chaudhary AK. Ayurvedic Bhasma: the most ancient application of nanomedicine. Journal of Scientific and Industrial Research. 2010; 69:901-905.
- 12. Patel C, Shahgond L, Ahir P, Acharya S. Development and evaluation of antiobesity polyherbal granules: A full spectrum weight management concept. Obesity Medicine. 2020 Dec 1, 20:100299.
- 13. Patel S, Ismail Y, Singh S, Rathi S, Shakya S, Patil S S, Bumrela S, Jain P C, Goswami P and Singh S (2024) Recent innovations and future perspectives in transferosomes for transdermal drug delivery in therapeutic and pharmacological applications. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 40, e20240031. doi: 10.62958/j.cjap.2024.031.
- 14. Bhardwaj SK, Dwivedia K, Agarwala DD. A review: HPLC method development and validation. International Journal of Analytical and Bioanalytical Chemistry. 2015;5(4):76-81.
- Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. Journal of pharmaceutical and biomedical analysis. 2018 Jan 5; 147:590-611.
- 16. Ravi K Kumar V R, Patel B D, Rathi S, Parthiban S, Upadhye M C, Shah A M, Rehan S S A, Samanta S and Singh S (2024) Formulation and evaluation of drumstick leaves tablet as an immunomodulator. 40, e20240004. doi: 10.62958/j.cjap.2024.004.
- 17. Ravi K Kumar V R, Rathi S, Singh S, Patel B, Singh S, Chaturvedi K and Sharma B (2023) A Comprehensive review on ulcer and their treatment. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 39, e20230006. doi: 10.62958/j.cjap.2023.006.
- 18. Colombo R, de L. Batista AN, Teles HL, Silva GH, Bomfim GC, Burgos RC, Cavalheiro AJ, da Silva Bolzani V, Silva DH, Pelícia CR, Guimarães FM. Validated HPLC method for the standardization of Phyllanthus niruri (herb and commercial extracts) using corilagin as a phytochemical marker. Biomedical Chromatography. 2009 Jun;23(6):573-80.
- 19. Shailajan S, Sayed N, Menon S, Singh A, Mhatre M. A validated RP-HPLC method for quantitation of trigonelline from herbal formulations containing Trigonella foenum-graecum (L.) seeds. Pharmaceutical methods. 2011 Jul 1;2(3):157-60.
- 20. Mishra A, Mishra AK, Tiwari OP, Jha S. HPLC analysis and standardization of Brahmi vati—An Ayurvedic poly-herbal formulation. Journal of Young Pharmacists. 2013 Sep 1;5(3):77-82.
- 21. Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. Journal of pharmaceutical and biomedical analysis. 2018 Jan 5; 147:590-611.
- 22. Jeong SY, Kim HM, Lee KH, Kim KY, Huang DS, Kim JH, Seong RS. Quantitative analysis of marker compounds in Angelica gigas, Angelica sinensis, and Angelica acutiloba by HPLC/DAD. Chemical and Pharmaceutical Bulletin. 2015 Jul 1;63(7):504-11.
- 23. Wang S, Gan Y, Kan H, Mao X, Wang Y. Exploitation of HPLC analytical method for simultaneous determination of six principal unsaturated fatty acids in Oviductus Ranae based on quantitative analysis of multi-components by single-marker (QAMS). Molecules. 2021 Jan 18;26(2):479.
- 24. Lee MK, Ling JH, Chun MH, Jeong JH, Na YC, Lee KW, Jung JH, Hong J. Simultaneous determination of biological marker compounds in Ostericum koreanum by HPLC method and discrimination by principal component analysis. Bulletin of the Korean Chemical Society. 2008;29(12):2465-70.

25. Ahmad W, Zaidi SM, Mujeeb M, Ansari SH, Ahmad S. HPLC and HPTLC methods by design for quantitative characterization and in vitro anti-oxidant activity of polyherbal formulation containing Rheum emodi. Journal of chromatographic science. 2014 Sep 1;52(8):911-8.

26. Raja MS, Khan I, Perumal P. Quantitative Analysis of Glycyrrhizic Acid in Crude Drug and its Herbal Formulation by HPLC. Asian Journal of Research in Chemistry. 2010;3(3):703-6.