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ABSTRACT 
Both the frequency and intensity of earthquakes are on the rise, which highlights the crucial need for predictive models 
to improve the resilience of buildings. Through the utilisation of a methodical approach that incorporates 
dimensionality reduction, recursive feature elimination (RFE), and feedforward neural networks (FFNNs), this 
research investigates the potential for deep learning to be utilised in the prediction of the seismic resilience of 
buildings. In order to preprocess the high-dimensional structural and material datasets, dimensionality reduction is 
utilised. This helps to streamline the feature space while preserving essential information. After that, RFE is utilised 
for the purpose of feature selection, with the objective of giving priority to the most relevant variables that have an 
impact on earthquake resistance. These variables include material qualities, structural design parameters, and 
geographic classifications of seismic zones. FFNNs, which exhibit robust prediction skills and adaptability to 
complicated, non-linear relationships that are inherent in the data, are utilised in the process of performing the final 
classification. According to the findings, the categorisation accuracy is quite high. 
Keywords: Deep Learning, Earthquake-Resistant Buildings, Predictive Analysis, Structural Engineering, Feature 
Selection, Dimensionality Reduction, Neural Networks. 
1. Introduction 
Earthquakes are among the most destructive natural disasters, and they pose substantial threats to several aspects of 
society, including human life, infrastructure, and the stability of the economy. The demand for buildings that are 
resistant to earthquakes has grown more urgent than it has ever been before as a result of the acceleration of climate 
change and the growing urbanisation of the world. Because of the multifarious nature of structural engineering, 
predicting the resilience of structures under seismic stress is a difficult process[1]. This is because structural 
engineering involves a large number of variables, including the qualities of the materials, the architectural design, and 
the geographical considerations[2]. In this particular field, the recent developments in deep learning have presented an 
opportunity to revolutionise predictive modelling. different breakthroughs enable an unprecedented level of accuracy 
and efficiency in the analysis of the complex correlations that exist between different variables. 
Deep learning is a subfield of artificial intelligence that has gained popularity due to its capacity to manage huge and 
complicated information. As a result, it is a perfect instrument for predictive analysis in engineering. The application 
of a systematic technique that includes three essential components is the primary emphasis of this research. These 
components are preprocessing through dimensionality reduction, feature selection through Recursive Feature 
Elimination (RFE), and classification using Feedforward Neural Networks (FFNNs). In conjunction with one another, 
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these techniques are aimed at developing a comprehensive prediction framework for evaluating the seismic resistance 
of buildings.  
The difficulty of high-dimensional data, which frequently characterises structural engineering datasets, is addressed by 
dimensionality reduction, which acts as the cornerstone of the preprocessing phase. Typically, these datasets contain 
factors such as material strength, load distribution, and seismic zone data, all of which have the potential to overwhelm 
conventional machine learning methods. In this study, the dimensionality of the dataset is reduced while critical 
information is preserved by the utilisation of techniques such as Principal Component Analysis (PCA) and 
autoencoders. This phase not only reduces the amount of computational complexity, but it also enables the model to 
function more effectively and accurately. 
In order to ensure that the most important variables are prioritised for study, feature selection, which is carried out with 
RFE, is conducted. There are specific characteristics that have a more significant impact on the structural resilience of 
structures that are designed to withstand earthquakes [3]. These characteristics include the concrete grade, the details of 
the steel reinforcement, and the kind of soil. This is accomplished through recursive training and evaluation of the 
model, which allows RFE to systematically rank these features, hence removing factors that have less of an impact [4]. 
This targeted approach not only makes the modelling process easier to understand, but it also makes the findings more 
interpretable, which is an essential component in engineering applications, where decisions frequently have the 
potential to significantly impact the outcome of a situation.  
In the classification step, FFNNs are utilised. This is a powerful deep learning architecture that is able to capture the 
intricate and non-linear interactions that occur between the characteristics that have been picked. When it comes to 
modelling the complex relationships that are inherent in structural engineering data, FFNNs do exceptionally well in 
comparison to standard methods[5]. For the purpose of classifying buildings as either earthquake-resistant or non-
resistant based on their structural and material characteristics, the network is trained using datasets that have been 
provided with labels. For this particular objective, FFNNs are particularly well-suited because of their versatility and 
their capacity to generalise across a wide variety of datasets.  
Through the provision of a scalable and accurate prediction framework for evaluating earthquake-resistant buildings, 
this research makes a contribution to the subject of structural engineering within the engineering discipline. 
Dimensionality reduction, RFE-based feature selection, and FFNN classification are all components that are 
incorporated into the suggested method in order to meet the issues of high-dimensional data, feature relevance, and 
model performance. Furthermore, this research sheds light on the potential of deep learning to improve the design and 
evaluation of infrastructure that is resistant to earthquakes, so paving the way for safer urban settings in areas that are 
prone to seismic activity. 
2. RELATED WORKS 
Deep learning for seismic resistance prediction in structural engineering has garnered attention in recent years. 
Researchers have tried many methods to improve data preparation, feature selection, and classification. This section 
discusses significant field contributions. Dimensionality reduction, Recursive Feature Elimination (RFE), and 
Feedforward Neural Networks (FFNNs) are used for preprocessing, feature selection, and classification. Recent works 
by Kim, He, Li, Chollet, Szegedy, and Chien are cited.  
One of the biggest issues in structural engineering is preparing high-dimensional datasets. Kim, Ryu, and Park [6] 
stressed civil engineering dataset dimensionality reduction. Material qualities, seismic activity, and load distributions 
need dimensionality reduction. They found that PCA and autoencoders can reduce large datasets while keeping 
structural information. These feature space-reduction algorithms increase deep learning model computational 
efficiency and interpretability. This approach is very useful in seismic resistance analysis, where datasets can contain 
many elements that are hard to comprehend. 
To determine which factors have the most impact on earthquake resistance, feature selection is crucial. He and Li [7] 
used Recursive Feature Elimination (RFE) in structural engineering to choose important factors including material 
composition, structure design parameters, and soil types. RFE works by recursively training a model, ranking features 
by importance, and deleting the least important. This iterative approach makes engineering models more efficient and 
interpretable by making decision-making transparent and reliable. This is a fundamental requirement. Classification 
methods, especially FFNNs, can predict building seismic resistance. Chollet [8] highlighted FFNNs' versatility in 
modelling structural datasets complex, non-linear relationships. These neural networks excel at adaptive learning 
across many datasets, making them excellent for earthquake resilience forecasts. When trained on labelled datasets, 
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FFNNs can correctly classify buildings as earthquake-resistant or not based on structural and material properties. Due 
to their versatility, FFNNs function well even with noisy or partial input.  
Deep learning for structural engineering has advanced in adjacent domains, leading to additional advances. Szegedy 
and colleagues [9] used deep learning to interpret seismic stress visualisations and building layouts. Even though they 
focus on convolutional neural networks, their feature extraction algorithms can help FFNN-based models handle 
tabular input. Chien et al. [10] used machine learning to forecast high-risk structures for earthquake-induced structural 
collapses in a detailed case study. Their findings highlighted the importance of domain knowledge in predictive 
frameworks, which improved accuracy and usability.  
Overall, these contributions demonstrate deep learning's revolutionary potential in seismic resistance research. This 
study uses dimensionality reduction, RFE, and FFNNs to solve data complexity, feature selection, and prediction 
accuracy problems. The system uses Kim et al., He and Li, Chollet, Szegedy, and Chien techniques. This method 
improves earthquake-prone structure safety and resilience.  
3. RESEARCH METHODOLOGY 
The development of a predictive framework for evaluating the earthquake resilience of structures is the primary 
emphasis of the technique that is being utilised for this project. Preprocessing through dimensionality reduction, 
feature selection through Recursive Feature Elimination (RFE), and classification using Feedforward Neural Networks 
(FFNNs) are the three essential processes that have been incorporated into the methodology as shown in Figure 1. Each 
phase is intended to address a particular difficulty, such as the complexity of high-dimensional data, the identification 
of essential structural elements, and the modelling of non-linear interactions, with the end goal of achieving a 
prediction system that is both efficient and accurate. 
In the preprocessing stage, the dataset is prepared for analysis prior to being processed [11]. The data includes a variety 
of factors, including material qualities (for example, the grade of concrete and the type of steel), structural attributes 
(for example, the size of beams and columns, reinforcing details), and seismic zone classifications. The utilisation of 
data cleaning procedures allows for the management of missing values, the removal of duplicates, and the 
normalisation of numerical features through the application of Min-Max scaling, which guarantees uniformity across 
variables [12]. Techniques for dimensionality reduction are utilised in order to reduce the dataset while maintaining the 
integrity of its essential component information. PCA, which stands for principal component analysis, has been 
selected as the major method for decreasing the high-dimensional feature space. By reducing the original dataset to a 
smaller set of uncorrelated variables, also known as principal components, principal component analysis (PCA) is able 
to explain the majority of the variance discovered in the data. A scree plot analysis or the retention of components that 
account for at least 95% of the total variance are both methods that can be utilised to ascertain the number of 
components utilised. In this step, the computational complexity is reduced, the interpretability is improved, and the 
data are prepared for efficient analysis in subsequent stages. 
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Figure 1: Shows the Flowchart of the proposed method. 
In order to determine which factors have the most impact on earthquake resistance, the feature selection stage makes 
use of a technique known as Recursive Feature Elimination (RFE). RFE is a method that ranks features in a systematic 
manner by training a straightforward model, such as a decision tree or linear regression, and then iteratively removing 
the characteristics that are deemed to be of the least importance [13]. Following the completion of each iteration, the 
model is retrained in order to assess the influence provided by the remaining features. Until an ideal selection of traits 
is determined, this procedure will continue until it is completed [14]. RFE gives priority to characteristics that are 
essential for estimating earthquake resistance, such as the strength of the material, the kind of soil under the structure, 
and the dimensions of the structure.  
Dimensionality Reduction (Principal Component Analysis - PCA) 
PCA transforms high-dimensional data into a smaller set of uncorrelated components: 
Z=XW 
Where: 
Z: Transformed data (principal components) 
X: Original dataset (standardized) 
W: Matrix of eigenvectors corresponding to the largest eigenvalues 
RFE not only increases the computational efficiency of the model by concentrating on the most critical features, but it 
also improves the interpretability of the model, which is a key component in structural engineering, where judgements 
must be comprehensible and anchored in accurate data.  
Feedforward Neural Networks (FFNN) 
The output of a neuron is: 
y=ϕ(w1x1+w2x2+b) 
Where: 
x1,x2: Inputs 
w1,w2: Weights 
b: Bias 
ϕ(x)=max(0,x) for ReLU) 
FFNNs are utilised throughout the categorisation step in order to come to a conclusion regarding whether or not a 
building is earthquake-resistant. The capability of FFNNs to model intricate and non-linear interactions between 
features is the primary reason for their selection. An input layer that represents the features that have been picked, 
numerous hidden layers that have Rectified Linear Unit (ReLU) activation functions to capture non-linearity, and an 
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output layer that has either a sigmoid or softmax activation function for binary classification are the components that 
make up the architecture of the network. In order to guarantee that the model is able to generalise successfully to data 
that it has not before encountered, the dataset is divided into training, validation, and testing subsets in a ratio of 
70:15:15. The backpropagation method is utilised to train the network, and the Adam optimiser is utilised to minimise 
the categorical cross-entropy loss function wherever possible. For the purpose of preventing overfitting and improving 
the resilience of the model, regularisation techniques such as dropout and batch normalisation are utilised inside the 
framework.  
Loss Function 
The loss for each prediction is: 
L=−(ylog(y^)+(1−y)log(1−y^)) 
Where: 
y: True label (0 or 1) 
y^: Predicted probability 
There are a number of metrics that are utilised in order to assess the effectiveness of the FFNN classifier. These 
metrics include accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic (ROC) 
curve [15]. The prediction skills of the model are evaluated based on these criteria, which provide a comprehensive 
assessment. In addition, sensitivity analysis is carried out in order to investigate the impact that individual 
characteristics have on the predictions. This provides insights into the structural aspects that have the most important 
influence on earthquake resistance.  
Using this technology, a scalable and efficient framework for predicting the seismic resilience of structures is 
established. This framework is achieved by integrating preprocessing through dimensionality reduction, RFE-based 
feature selection, and FFNN classification. The suggested method tackles the difficulties associated with high-
dimensional data, improves the significance of features, and guarantees accurate classification, all of which contribute 
to the development of structural designs that are safer and more resilient in areas that are prone to seismic activity.   
4. RESULTS AND DISCUSSION 
There were three primary performance metrics that were utilised in the evaluation of the deep learning framework that 
was suggested for the purpose of forecasting earthquake-resistant buildings. These metrics were the Area Under the 
Receiver Operating Characteristic Curve (AU-ROC), the False Positive Rate (FPR), and the False Negative Rate 
(FNR). A comprehensive awareness of the classification accuracy of the model as well as its ability to strike a balance 
between missed detections and false alarms is supplied by the usage of these measures due to the fact that they provide 
a comprehensive understanding of the model.  
Table 1: Shows the Performance Metrics comparison. 

Model AU-ROC 
False Positive Rate 
(FPR) 

False Negative Rate 
(FNR) 

Feedforward Neural Networks 
(Proposed Model) 

0.94 0.08 0.12 

Random Forest 0.89 0.12 0.18 

Support Vector Machines 
(SVM) 

0.85 0.15 0.2 

Logistic Regression 0.81 0.18 0.25 

K-Nearest Neighbors (KNN) 0.8 0.2 0.22 

Decision Tree 0.77 0.22 0.3 

 
The Feedforward Neural Network (FFNN) displayed a good capacity to differentiate between structures that are 
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earthquake-resistant and those that are not earthquake-resistant. This was proved by the fact that it was able to achieve 
an AU-ROC score of 0.94 as shown in Table 1 & Figure 2. A high score suggests that the combination of 
dimensionality reduction and Recursive Feature Elimination (RFE) is a great strategy for isolating the most relevant 
features, reducing the amount of noise, and improving the predictive power of the model. This is demonstrated by the 
very high score. 

 
Figure 2: Represents the Area Under the Receiver Operating Characteristic curve representation. 
The FPR of the model was found to be 0.08, which suggests that only 8% of structures that were not resistant were 
incorrectly tagged as resistant. This was determined by the fact that the model had an FPR. Having a low false alarm 
rate is particularly crucial when it comes to being able to prevent people from placing an excessive amount of faith in 
potentially hazardous buildings.  

 
Figure 3: Shows the performance Metrics Comparison with different methods. 
Due to the fact that the FNR was measured at 0.12, it is possible to draw the conclusion that twelve percent of the 
structures that were resistant were assigned the wrong label of non-resistant to them. Even if it is slightly higher than 
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the FPR, this rate is still acceptable, especially when combined with successful AU-ROC performance. This is 
especially true when the FPR is already considered to be acceptable.  
These findings demonstrate that the approach is capable of striking a balance between ensuring the safety of the 
procedure and locating practical applications for the technology. In the future, there is a chance that the focus of work 
will be on further reducing FNR by enhancing the design of the FFNN and refining the process of feature selection.  
5. CONCLUSION 
Using dimensionality reduction, Recursive Feature Elimination (RFE), and Feedforward Neural Networks (FFNNs), 
this study presented a solid deep learning framework for the predictive analysis of earthquake-resistant buildings. The 
results showed that FFNN performed better in classification when combined with sophisticated preprocessing and 
feature selection, as seen by an AU-ROC of 0.94, a low False Positive Rate (FPR) of 0.08, and a controllable False 
Negative Rate (FNR) of 0.12. These results demonstrate how well the suggested methodology works to differentiate 
between earthquake-resistant and non-resistant structures while balancing missed detections and false alarms. In terms 
of classification accuracy and robustness, the FFNN continuously beat more conventional machine learning methods 
including Random Forest, Support Vector Machines, and Logistic Regression. Focus on the most important structural 
elements was ensured by the crucial integration of dimensionality reduction and RFE, which improved model 
efficiency and interpretability. This study demonstrates how deep learning may improve structure safety evaluations 
and provide a scalable and accurate solution for areas that are prone to earthquakes. To further increase forecast 
accuracy and usefulness in structural engineering, future research could investigate refining the neural network 
architecture and adding more data sources, such real-time seismic monitoring.  
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