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Abstract: 

The measurement of a patient's blood pressure reading is a vital biomarker that is utilized in the diagnosis of 
hypertension in addition to other cardiovascular diseases. Historically, it was measured with irregular and 
frequently extremely painful technology that was based on a cuff, such as a sphygmomanometer. This equipment 
was used to monitor blood pressure. In any case, it requires the collection of a number of distinct sensors; 
hence, this strategy is not only expensive but also inconvenient and time-consuming. The inclusion  of an 
advanced technique that is pioneered on machine learning is incorporated as section of the remit of this study. 
This compendium  of research's findings lead to the development of a model that is capable of correctly  
predicting systolic blood pressure (SBP). Clinical and lifestyle aspects were included when assessing  the model. 
A extensive  range of alternatives are available for application  in training algorithms in addition to the 
numerous  machine learning techniques  that may be employed. In mandate  to determine how to increase the 
model's accuracy, the findings  of its testing and validation were examined. In mandate  to accomplish the aim 
of precisely identifying the SBP, research was done on all three classes  of hypertension utilizing  the 
methodology that was described. 

Keywords: Clinical Feature Extraction, Systolic blood pressure, Cadiovascular disease, Hypertension, 
Calibration framework, Machine learning, Training. 

1. Introduction 

These days, one of the biggest risk factors for cardiovascular and cerebrovascular diseases is hypertension, also 
known as high blood pressure (BP), which accounts for about 31% of deaths worldwide [1].  High blood pressure 
is also one of the most significant risk factors for stroke. According to the World Health Organization (WHO), 
hypertension was the leading cause of death worldwide in 2014, accounting for the deaths of 9.4 million 
individuals [2]. Hypertension is the risk factor that is regarded to be the second most significant after diabetes 
for developing cardiovascular disease [3]. Diabetes is the risk factor that is considered to be the first most 
significant. Because a sizeable portion of those who have hypertension either do not experience any symptoms 
as a result of it or fail to take any action to bring it down, it is sometimes referred to as the "silent killer." This 
moniker was given to hypertension as a result of these two facts. The blood pressure, or BP, of a patient is one 
of the most important periodic factors that can help medical experts diagnose cardiovascular illnesses in 
patients. BP is also known as the patient's blood pressure. 
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A lower reading for the diastolic blood pressure, also known as the DBP, is an indication of a lower reading for 
the blood pressure overall. The most reliable measurement that can be taken of a patient's blood pressure is the 
systolic blood pressure (also known as SBP). The phrase "mean arterial pressure" (MAP) refers to the average 
blood pressure that takes place throughout the course of a single cardiac cycle [4]. When either the systolic or 
diastolic blood pressure (BP/DBP) is greater than 140/90 mm Hg, hypertension is diagnosed [5]. Hypertension 
is a condition that can cause harm to internal organs. One of the potential complications of having hypertension 
is organ failure. The typical range of results for mean arterial pressure (MAP) is between 70 and 110 mm Hg 
[6]. This range of values is regarded to be healthy. Patients diagnosed with hypertension are strongly encouraged 
to perform regular blood pressure checks on themselves. Because there are so many things that might affect 
blood pressure, such as nutrition, the use of cigarettes, stress, and others, it is possible that blood pressure 
measurements will be inaccurate. In order to arrive at an accurate diagnosis, continuous monitoring of the 
patient's blood pressure is required. Continuous monitoring of blood pressure also helps physicians provide 
more effective therapy by enabling them to more accurately deliver medication, which is one of the ways in 
which this monitoring assists them [7]. 

The use of a cuff and a certain amount of intrusion into the body is required for the most popular and accurate 
techniques of measuring a person's blood pressure [8, 9]. However, you will only find technology of this kind 
in medical facilities such as hospitals and other such establishments. The auscultatory and oscillometric methods 
that are utilized to determine SBP and DBP measurements do not pose any health risks or cause any discomfort 
to the patient. These techniques are used as the foundation for the vast majority of today's blood pressure 
monitors. The readings that these devices provide, on the other hand, are not continuous and are instead 
depending on the cuff. 

To diagnose hypertension, doctors look at a patient's blood pressure readings from an arterial blood pressure 
monitor called a sphygmomanometer [10]. This device is the gold standard for measuring blood pressure and 
consists of an inflating cuff, a mechanism of inflation that can be handled manually or automatically, and a 
mercury manometer.  

Medical studies show that hypertension can be halted in its tracks and its consequences mitigated through early 
diagnosis, behavioral modification, and tight control. However, hypertension is often called a "silent killer" 
because the majority of persons with the ailment show no indications or symptoms of having the condition [10]. 
Some people with hypertension also report other symptoms, such as nausea, chest pain, headaches, difficulty 
breathing, nosebleeds, and palpitations. These symptoms are not specific to this disease, and they usually don't 
show up until the patient's hypertension is rather severe [11]. As a result, hypertension identification and 
monitoring continue to be areas of active study, especially in low-income countries with less comprehensive 
and preventative medical services. 

Machine learning (ML) techniques can now detect and monitor numerous medical diseases, including 
hypertension [12], thanks to the abundance of clinical data made available in electronic health records (EHRs). 
Machine learning is used in many different ways in the medical profession, from simple techniques like logistic 
and linear regression to complex methods like artificial neural networks (ANN), which can have a wide range 
of architectural configurations and properties. Machine learning (ML) models are created to provide physicians 
with a resource that will aid them in their decision-making [13]. Recently, new measuring approaches that are 
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based on machine learning have been created in an effort to provide faster methods for the calibration process 
[14]. These methods exert the signals made by the ECG and PPG. To determine an individual's blood pressure, 
a variety of characteristics and attributes are derived from their PPG and ECG data via machine learning. In 
mandate to use the PPG and ECG together, this is done. Because of the simplicity of our proposed estimating 
scheme, utilizing a single PPG signal is a viable substitute. This approach may be utilized to continuously 
generate estimated BP [15]. This article presents a novel machine learning-based SBP prediction method that 
incorporates a wide range of variables in addition to SBP values.  

2. The Components and Procedures 

This paper proposes a recent modeling technique to predict the estimate of SBP for discussion. Machine learning 
was used to gather the clinical characteristics and lifestyle factors required for the proposed approach, which 
was then used to build the approach. This makes it possible to arrive at the most precise findings that are 
practical. The procedure of the proposed SBP predicted method is depicted in Figure 1, which may be found 
here. The steps involved in this procedure are broken down into their component parts further on in this section. 

In total, there were 501 features, with the SBP functioning as the primary feature for achieving the aim. In 
addition, there were 14 clinical features that were scrutinized during this research. Nevertheless, when the model 
was being evaluated, some of the features were left unselected so that the accuracy of the model's performance 
may be improved. 

In order to determine which method of machine learning will prove to be the most effective for the model, a 
number of different machine learning approaches [16, 17] have been computed. These machine learning 
approaches include linear regression (LR), support vector machine (SVM), decision tree regression (DTR), 
Gaussian process regression (GPR), and artificial neural network (ANN). According to the findings, the ANN 
method had the highest level of precision when compared to the other approaches. It had been decided to 
examine several distinct combinations of percentages for the training, validation, and testing processes.  

The various amounts of neurons that were hidden had been modified [18]. Later, feature extraction had to be 
carried out once more, with one of the traits being chosen before each testing and validation session. This was 
done so that the results could be validated based on a range of criteria. The validation process took place as 
follows. According to the findings, each of the 14 distinguishing characteristics was a good match for the model. 
After the review of the final model, the conclusion was predictable, and the number of errors that could have 
occurred was kept to a minimum. 

2.1 The use of datasets 

In this research, the online dataset has been used [19]. The dataset contains information from 270 patients and 
14 independent predictive variables. As a result of the fact that the classification and calculation of feature 
variables is used for training, testing, and estimating. These 14 variables with 270 samples that were included 
in the model after it was built with the data from the datasets as shown in Table 1. A comparison of algorithms 
was developed in order to determine which one might provide the most reliable estimates of SBP. In order to 
get the most optimal result, various algorithms [20, 21], including LR, SVM, GPR, and ANN, had been put 
through their paces.  
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𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝑵𝒂𝒎𝒆 𝑫𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏 

𝐴𝑔𝑒 𝑇ℎ𝑒 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

𝑆𝑒𝑥 𝑇ℎ𝑒 𝑔𝑒𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

𝐶ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛 𝑡𝑦𝑝𝑒 𝑇ℎ𝑒 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

𝐵𝑃 𝑇ℎ𝑒 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑇ℎ𝑒 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

𝐹𝐵𝑆 𝑜𝑣𝑒𝑟 120 𝑇ℎ𝑒 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑏𝑙𝑜𝑜𝑑 𝑠𝑢𝑔𝑎𝑟 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑣𝑒𝑟 120 𝑚𝑔/𝑑𝑙 

𝐸𝐾𝐺 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑇ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑐𝑎𝑟𝑑𝑖𝑜𝑔𝑟𝑎𝑚 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

𝑀𝑎𝑥 𝐻𝑅 
𝑇ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙𝑠 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑  

𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑎𝑛𝑔𝑖𝑛𝑎 𝑇ℎ𝑒 𝑎𝑛𝑔𝑖𝑛𝑎 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

𝑆𝑇 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑇ℎ𝑒 𝑆𝑇 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑛 𝑎𝑛 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑐𝑎𝑟𝑑𝑖𝑜𝑔𝑟𝑎𝑚 

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑆𝑇 𝑇ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑆𝑇 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑐𝑎𝑟𝑑𝑖𝑜𝑔𝑟𝑎𝑚 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑠𝑠𝑒𝑙𝑠 𝑓𝑙𝑢𝑟𝑜 𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑣𝑒𝑠𝑠𝑒𝑙𝑠 𝑠𝑒𝑒𝑛 𝑖𝑛 𝐹𝑙𝑢𝑜𝑟𝑜𝑠𝑐𝑜𝑝𝑦 𝑖𝑚𝑎𝑔𝑒𝑠 

𝑇ℎ𝑎𝑙𝑙𝑖𝑢𝑚 𝑇ℎ𝑒 𝑇ℎ𝑎𝑙𝑙𝑖𝑢𝑚 𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑠𝑡 𝑓𝑖𝑛𝑑𝑖𝑛𝑔𝑠 

𝐻𝑒𝑎𝑟𝑡 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 
𝑊ℎ𝑒𝑡ℎ𝑒𝑟 𝑜𝑟 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 

𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑤𝑖𝑡ℎ 𝐻𝑒𝑎𝑟𝑡 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 

2.2 Pseudocode for the Proposed Method 

2.2.1 Input 

• A set of clinical characteristics for a patient group with established hypertension and cardiovascular disease. 

• A group of candidate clinical characteristics that will be utilized for the purposes of validation and calibration. 

2.2.2 Output 

• A hypertension and cardiovascular disease diagnostic model that has been verified and calibrated, utilizing 
the candidate clinical features as inputs. 

2.2.3 Steps 

1. Create two distinct groups from the dataset: the training group and the validation group. 

2. Train a model on the training set using the candidate clinical features using the candidate clinical features. 

3. Conduct an analysis of the model using the validation set. 
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4. Adjust the parameters of the model based on the validation set. 

5. Send back the model that has been checked and adjusted. 

2.2.3.1 Splitting the dataset 

In mandate to guarantee equal levels of cases of cardiovascular disease and hypertension in the training and 
validation sets, the dataset was stratified. For this, standard machine learning techniques like class label-based 
stratification and arbitrary splitting were used.  

2.2.3.2 Training the model 

The model can be trained with a variety number of machine learning algorithms, Including logistic regression, 
support vector machines, or random forests, amongst others. The particular clinical features that are being 
utilized and the performance measures that are wanted will both play a role in the selection of the algorithm. 

2.2.3.3 Validating the model 

The model should be assessed on the validation set according to numerous criteria, including accuracy and 
others. "Calibrating" a model is the procedure of adjusting its predictions so that they fit more closely with the 
real labels. Isotonic regression and platt scaling are just two of the various methods that can be utilized to 
achieve this objective. The selection of the appropriate approach will depend on the specific model being used 
as well as the desired performance metrics. 

2.2.3.4 Calibrating the model 

The model might then be returned to the user once it has been trained, assessed, and calibrated. Before the 
model can be viewed as validated and calibrated, this step is required. The model can then be used to predict 
the possibility that newly detected individuals would experience cardiovascular disease or hypertension. The 
subsequent pseudocode illustrates how to train, assess, and fine-tune a logistic regression model for the 
diagnosis of cardiovascular disorders and hypertension: 

# Split the dataset into training and validation sets. 

training_set, validation_set = split_dataset(dataset) 

# Train a logistic regression model on the training set. 

model = LogisticRegression() 

model.fit(training_set.X, training_set.y) 

# Evaluate the model on the validation set. 

predictions = model.predict(validation_set.X) 

accuracy = accuracy_score(validation_set.y, predictions) 

precision = precision_score(validation_set.y, predictions) 

recall = recall_score(validation_set.y, predictions) 

f1_score = f1_score(validation_set.y, predictions) 
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# Calibrate the model using the validation set. 

model = PlattScaling().fit(validation_set.X, validation_set.y) 

# Return the validated and calibrated model. 

return model 

3. The Machine Learning Algorithms 

Following the computation of five different machine learning methods (LR, SVM, DTR, GPR, ANN) [20, 21], 
the ANN method was found to have the best performance. Table 2 shows a comparison among all these five 
ML methods. The mean average error (MAE) [22, 23] for this method was approximately 10.78mmHg, which 
was lower than other methods. As a result, the ANN was the major tool [24] that utilized in this research to 
make predictions on the SBP.  The Support Vector Machine (SVM), is a form  of non-linear model that is 
commonly  applied  for classification-related endeavors. Although it is more complex  to train and comprehend, 
it outperforms LR in terms of precision  when used  to intricate  datasets. Decision Tree Regression (DTR), a tree-
based model, is a versatile tool that can be used for both regression and classification tasks. It is not impacted 
by data noise and is simple to comprehend. On the other hand, it has the capacity  to overfit on small  datasets. 
The non-linear model known as Gaussian Process Regression (GPR) is adaptable enough to do tasks comprising  
regression as well as classification. On more complicated datasets, it produces more accurate results than DTR, 
despite being more challenging to learn and understand. The Artificial Neural Network, or ANN, is a 
sophisticated non-linear model that can do both classification and regression tasks.  It is the machine learning 
model that produces the most accurate results when applied to complicated datasets; nevertheless, it is also the 
model that is the most challenging to train and analyze. 

Table 2: Comparison on various machine learning models 

Feature LR SVM DTR GPR ANN 

Linearity Linear Non-linear Non-linear Non-linear Non-linear 

Model type Generative Discriminative Generative Generative Discriminative 

Interpretability High Medium Low Low Low 

Robustness High High Medium Medium Low 

Scalability High High Medium Medium Low 

Training time Fast Slow Medium Medium Slow 

Inference time Fast Fast Fast Fast Fast 

Common use 
cases Classification Classification 

Regression, 
classification Regression 

Classification, 
regression 
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In order to locate the most effective training algorithm, start with a configuration of 10 hidden neurons, used 
80% of the data for training, 10% for validation, and 10% for testing, respectively, and then continued on from 
there. Table 3 presents the results between number of hidden neurons and overall performance. Table 4 presents 
the cumulative error percentage for the different ratios of training, testing and validation. Table 5 presents 
comparison of performance on different grades of blood pressure. Table 6 presents an overall comparison of 
performance on results. Table 7 presents performance results based on percentage of training, testing and 
validation. Table 8 presents comparison among various training algorithms 

According to the results presented, training appears to have the highest accuracy when compared to the other 
approaches. Following that, the proportion of training data is readjusted and the outcomes are compared. 

The most accurate result was accomplished by allocating 90% of the time to training, 5% of the time to 
validation, and 5% of the time to testing, respectively. 

One method that was used to evaluate the effectiveness of the training was changing the total number of neurons 
that were concealed on the hidden layer. The original blueprint asked for ten hidden neurons, but as training 
progressed, numerous different hidden neuron counts were tested to see which network configuration performed 
the best. 

4. Discussion 

In theory, the system may make a great deal more errors than it actually does at the moment. In an effort to get 
rid of these unclear characteristics, a number of studies had already been carried out to assess how effective the 
relative efficacy had been. It is ensured that the model contained no superfluous characteristics and that it passed 
all of the validation tests with flying colors. The actions that need to be taken in order to validate the results are 
outlined in the following paragraphs. 

The ANN was trained, validated, and tested on all twelve of the characteristics specified above, with the SBP 
feature serving as the goal feature. In order to guarantee that the findings were reliable throughout all sessions 
and trained without selecting any features at any point.  

After training with 14 characteristics, the error percentage for errors of less than 5 mmHg, 10 mmHg, 15 mmHg 
and 20mmHg. In order to receive the greatest potential results from the training process, then make sure that 
none of the 14 characteristics are left untrained. 

A 20-bin error histogram is displayed in Figure 2-4 for different ratios of training testing and validation, with 
zero being represented by the orange line, training errors being represented by the blue bar, and test errors being 
represented by the red bar. As can be seen in the illustration, errors have a tendency to congregate around the 
orange line, which indicates an error value of zero, and diminish as the error value grows. 

For the assessment of SBP, our model was able to meet the benchmark set by the British Hypertension Society 
(BHS) [25], indicating that its performance is on par with an A. The British Hypertension Society's previous 
standard was consulted in mandate to make this determination.  

The MAE and STD error margins should both be 8 mmHg, whereas the error margin for the approach that 
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estimates blood pressure without invasive procedures should be less than 5 mmHg. Both our mean absolute 
error (MAE) of 3.03 mmHg and our standard deviation (STD) of 6.11 mmHg fall within the permissible range 
defined by the AAMI [26]. 

5. Conclusion 

In this research, a new model for calculating SBP based on a machine learning algorithm has been developed. 
The model was composed of three distinct phases: input, calibration, and output. The various parts of the process 
inspired the stage names. The approach began with the selection and retrieval of datasets associated with clinical 
and lifestyle characteristics. This was done so that could better grasp the connection between the two. Thirteen 
different attributes' values, including SPB values, were chosen to serve as training data. Five different types of 
machine learning have been compared so far; these include LR, SVM, DTR, GPR, and ANN. The results show 
that ANN is capable of the highest level of accuracy. 

In the second part of the process, the actual calibration was done. After looking at the MAE and STD results, it 
was determined that BRA was the most effective method of PE. Next, the various percentages of data that had 
been used for training, validation, and testing are compared. There were no complications with this surgery. 
The most precise result was attained by initially training with 90% of the data, then validating with 5% of the 
data, and finally testing with 5% of the data. It is presumed that the ANN had a single hidden layer, and that 
initially, this layer included 10 hidden neurons. Multiple types of hidden neurons were tested, however it was 
discovered that the optimal number of hidden neurons for the ANN to give correct results was 15. This held 
true regardless of the diversity of hidden neuron types used. 

In the third phase of development, changes were made to the entered data and characteristics to ensure the model 
was accurate. In order to ensure the accuracy of the findings, avoid making value selections for model variables 
where there was a high degree of ambiguity. The studied model receives an A for its SBP estimation accuracy 
according to both the BHS standard and the AAMI standard. The model qualifies since it satisfies both of these 
criteria. Because of this, the model of prediction that theorized and built turned out to be very accurate. 
However, if the data associated with the features were more reliable, the model's performance might 
theoretically be improved even further. 

Table 3: Number of hidden neurons and overall performance  

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑀𝐴𝐸 (𝑚𝑚𝐻𝑔) 𝑆𝑇𝐷 (𝑚𝑚𝐻𝑔) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) 

 2 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 10.26 12.87 81.63 

 4 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 10.19 12.97 80.00 

 5 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 10.07 12.81 84.08 

 6 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 7.59 9.85 87.14 

 7 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 5.27 7.82 86.02 

 10 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 5.07 7.79 88.47 
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 11 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 3.09 6.23 91.43 

 15 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 7.00 9.24 90.71 

 16 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 7.58 10.55 92.04 

 20 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 9.30 12.31 91.02 

Table 4: Cumulative error percentage  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

70% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,  

15% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 

15% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

            

  

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔) < 5 37 56 25 31 39 43 40 30 28 28 50 39 39 52 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 10 

67 83 57 57 71 71 69 59 57 61 78 67 54 55 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 15 

87 93 76 76 87 86 86 76 76 77 91 84 66 76 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 20 

88 92 75 75 87 83 89 80 80 76 90 83 65 78 

80% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,  

10% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 

10% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

              

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔) < 5 37 56 25 31 39 43 40 30 28 28 50 39 55 60 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 10 

67 83 57 57 71 71 69 59 57 61 78 67 64 76 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 15 

87 93 76 76 87 86 86 76 76 77 91 84 75 57 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 20 

88 90 76 72 83 83 83 74 74 78 90 85 76 59 

90% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,  

5% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 

 5% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

              

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔) < 5 37 56 25 31 39 43 40 30 28 28 50 39 40 50 
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𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 10 

67 83 57 57 71 71 69 59 57 61 78 67 76 57 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 15 

87 93 76 76 87 86 86 76 76 77 91 84 68 66 

𝐸𝑟𝑟𝑜𝑟 (𝑚𝑚𝐻𝑔)

< 20 

88 95 78 78 88 89 89 79 79 79 90 86 70 69 

Table 5: Comparison of performance on different grades of blood pressure 

 70% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 15% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 

15% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

𝐸𝑟𝑟𝑜𝑟 

<  5 𝑚𝑚𝐻𝑔 

𝐸𝑟𝑟𝑜𝑟 

<  10 𝑚𝑚𝐻𝑔 

𝐸𝑟𝑟𝑜𝑟 

<  15 𝑚𝑚𝐻𝑔 

𝐸𝑟𝑟𝑜𝑟 

<  20𝑚𝑚𝐻𝑔 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠   66 87 95 96 

 𝐺𝑟𝑎𝑑𝑒 𝐴 59 83 93 92 

𝐵𝐻𝑆 𝐺𝑟𝑎𝑑𝑒 𝐵 49 74 88 87 

  𝐺𝑟𝑎𝑑𝑒 𝐶 39 64 83 82 

80% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 10% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 

10% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

    

𝑅𝑒𝑠𝑢𝑙𝑡𝑠   66 87 95 92 

 𝐺𝑟𝑎𝑑𝑒 𝐴 59 83 93 91 

𝐵𝐻𝑆 𝐺𝑟𝑎𝑑𝑒 𝐵 49 74 88 89 

  𝐺𝑟𝑎𝑑𝑒 𝐶 39 64 83 82 

90% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 5% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 5% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔     

𝑅𝑒𝑠𝑢𝑙𝑡𝑠   66 87 95 94 

 𝐺𝑟𝑎𝑑𝑒 𝐴 59 83 93 92 

𝐵𝐻𝑆 𝐺𝑟𝑎𝑑𝑒 𝐵 49 74 88 89 

  𝐺𝑟𝑎𝑑𝑒 𝐶 39 64 83 85 
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Table 6: Comparison of performance on results. 

 𝑀𝐴𝐸 (𝑚𝑚𝐻𝑔)    𝑆𝑇𝐷 (𝑚𝑚𝐻𝑔) 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠  𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑 3.13 6.25 

𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑀𝑒𝑑𝑖𝑐𝑎𝑙 𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝐴𝐴𝑀𝐼) 5.12 8.19 

 

Table 7: Performance results based on percentage of training , testing and validation 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,  

𝑎𝑛𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔          

𝑀𝐴𝐸 (𝑚𝑚𝐻𝑔) 𝑆𝑇𝐷 (𝑚𝑚𝐻𝑔) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) 

70% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 15% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 15% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 6.13 10.26 90.60 

80% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 10% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 10% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 5.71 8.57 93.63 

90% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 5% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 5% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 5.04 7.48 92.89 

 

Table 8: Comparison among various training algorithms 

70% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 

 15% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,  

15% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

𝑀𝐴𝐸 (𝑚𝑚𝐻𝑔) 𝑆𝑇𝐷 (𝑚𝑚𝐻𝑔) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) 

LR 9.415 11.649 66.085 

SVM 5.313 8.891 69.455 

DTR 8.045 10.422 71.983 

GPR 8.823 14.153 71.058 

ANN 7.199 7.038 73.082 

80% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,  

10% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,  

10% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

   

LR 11.40 14.10 78.12 
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SVM 6.43 10.76 82.10 

DTR 9.74 12.62 85.09 

GPR 11.40 14.10 84.00 

ANN 6.43 10.76 86.39 

90% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,  

5% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,  

5% 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

   

LR 11.67 14.44 81.93 

SVM 6.59 11.02 86.10 

DTR 9.97 12.92 89.24 

GPR 10.94 17.54 88.09 

ANN 8.92 8.73 90.60 

 

 

Figure 1: Block diagram of the proposed model 
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Figure 2: Predicted error (mmHg) for the case 70% training,15% validation,15% testing 

 

 

Figure 3: Predicted error (mmHg) for the case 80% training,10% validation,10% testing 
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Figure 4: Predicted error (mmHg) for the case 90% training,5% validation,5% testing 
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