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Abstract: In this study, deep learning has been investigated in clinical analysis, in terms of increasing the precision and 
speed in diseases identification, image division and features identification in various systems of bioscience. The CNN, 
U-net, and GAN deep learning algorithms used have been developed to accomplish a range of image and classification 
processes. The CNN-based model in healthcare was 92% diagnostically accurate, and the U-Net model was 89% accurate 
in segmenting medical images. In agriculture, CNN model when applied to plant disease detection had an accuracy of 
87%; GANs were utilized for generation of synthetic data thus enhancing the performance of model training. 
Stakeholders’ findings demonstrate that the application of AI can considerably decrease diagnostic time and improve 
accuracy in most cases in both fields. Synthetic data generation also played a big role in avoiding issues caused by the 
small, labeled datasets, especially in terms of generalization of models. It highlights revolutionizing the diagnostic 
process using cross-domain deep learning applications and provides information for a new era of healthcare management 
and agriculture. 
Keywords: Deep learning, diagnostic accuracy, image segmentation, synthetic data, healthcare and agriculture. 
I. INTRODUCTION 
The incorporation of deep learning approaches has proven to be relevant as well as feasible in many fields such as 
medical diagnosis and agriculture phenotyping among others. On the surface, these two domains seem to be diverse, 
however, they share similar issues at the keyword level during the aggregation of massive amounts of intricate images. 
Medical imaging because of focusing on diagnosis and therapy is revolutionized with deep learning to study the 
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important features of X-rays, MRI, and CT scans. Agriculteral imaging is also essential for plant phenotyping: learning 
plant characteristics, disease and the growth process; all these are essential if the best exposure in agricultural practices 
for maximum production is to be employed [1]. This paper explores the application of deep learning that extends from 
health to other disciplines, specifically revisiting medical diagnosis but also expanding into agricultural phenotyping. 
This study will draw other methodologies from computer science since it is analysing how models developed in one field 
can be useful to the other with an intention of enhancing both fields [2]. For example, a deep learning model developed 
to analyze medical images can be used to detect diseases in crops or check growth environments and vice versa. It may 
be expected that such cross-area application will make image processing and data analysis in the two fields more efficient 
and accurate, hence enhancing the diagnostic capability of health and the phenotyping capability of agriculture 
respectively [3]. Besides, such opportunities may open a new interdisciplinary field for healthcare management and 
agricultural development cooperation. Such interdisciplinary innovation in this regard would mean cooperating those in 
computer science, health, and farming who track down some of the toughest problems in each discipline. This research 
aims at filling the gap between these two fields and brings a new perspective in the deployment of deep learning as well 
as AI technologies in various domains. 
II. RELATED WORKS 
The automation of agriculture, healthcare and veterinary health through deep learning and AI seems to have potential in 
the optimization of diagnostic procedures. For example, in the agricultural sector, Elsherbiny et al (2024) proposed deep 
learning-based model to quickly detect robust health of grapes using digital images. The study, therefore, poses a 
spotlight on the use of AI to fasten disease detection and the subsequent decreased reliance on traditional, manual 
diagnostics for enhanced precision agriculture and accuracy [16]. Similarly, Grishina et al. (2024) applied chlorophyll 
fluorescence imaging to identify infections of plants. This technique, which is specific to agricultural applications, gives 
sense of what advanced imaging with AI could do for monitoring plant health. This research provides new avenues for 
the parallel use of similar deep learning techniques in medical diagnostics, in which image analysis can improve the 
detection and classification of diseases [21]. In the field of synthetic data generation, Goyal and Mahmoud (2024) 
reviewed techniques that used generative AI, a component which is critical to AI model development. It becomes easier 
to overcome the data scarcity problem, particularly in healthcare and agriculture, for which it is challenging to find 
labeled data. With the aid of synthetic data, the systems are robust and ready to tackle real-world diversity; thus, this has 
proven useful in training diagnostic models for both plant disease identification and medical condition detection [20]. 
AI has also revolutionized medical imaging. Lei et al. (2024) demonstrated deep learning implementation in agricultural 
image segmentation where it plays a critical role in raising the diagnostic accuracy. In medical imaging, segmentation 
would be quite simple, and easy to be applied for which the various structures of organs can be segmented for enhanced 
identification and treatment of tumours or abnormalities [24]. In veterinary medicine, Farschtschi et al. (2024) studied 
the use of digital holographic microscopy for the observation of leukocytes in dairy cow blood and milk. This technique, 
which images without labeling, opens new ways for veterinary diagnostics, by which infections or diseases may be 
tracked and monitored in animals better. Such techniques can find their mirror images in the human health care system 
too, especially in diagnostic imaging and disease monitoring [17]. Additionally, Kamariankis et al. (2024) created a low-
cost linear robotic camera system intended to monitor the growth of plants in greenhouses. This technology exemplifies 
how deep learning systems can be used in practical applications of agriculture, ensuring precise and automated 
monitoring can be implemented even with limited budgets. The idea of cost-effective AI-based diagnostic systems 
directly translates to healthcare, where cheap diagnostic equipment is required to enhance the availability of medical 
services [22]. Another veterinary use was reported by Li et al. (2022) which involved sophisticated methods of 
diagnosing fish diseases using AI also utilizing machine learning and image analysis in monitoring and maintaining 
animal health. This continues to expand the scope of usage of AI not only for agriculture and healthcare but also for even 
larger biological systems where diagnostics should be fast and effective for healthy living organisms to be assured [25]. 
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Also, Korkmaz et al. (2024) described research concerning the detection of threats posed by various dangers to farm 
animals via deep learning models. A comparative study on various AI models that could detect diseases in addition to 
other hazards towards the health of animals is included in the study. These deep learning models also improve the 
detection rate considerably and are highly required in animal care as it involves animal well-being, too, for their good 
health care, much like human healthcare is benefited in AI [23]. Finally, González-Rodríguez et al. (2024) explored the 
possibility of AI in phytopathology, highlighting its applicability in plant disease diagnosis. Their study is significant to 
show how AI systems may be applied in plant health management with improved crop productivity and sustainability. 
The analogy is indeed striking, where similar methods of AI-driven diagnostics have been applied in clinical pathology 
and medical diagnostics [19]. 
III. METHODS AND MATERIALS 
This paper will employ various materials and methodologies in an exploration of cross-domain deep learning techniques 
to enable improved diagnostics and phenotyping for medical and agricultural imaging. This includes collecting diverse 
datasets of imaging from the two domains, then applying deep learning models to learn and enhance the performance on 
them. Datasets used, description of each. All altogether there are three deep learning algorithms followed by the 
component description of each: each accompanied by a table; and then, the pseudocode [4]. 
Data Collection 
The datasets applied in this research are categorized into two main groups: medical imaging data and agricultural 
imaging data. Regarding medical applications of the proposed approach, we utilised datasets which are public available 
and includes tagged images for different diseases as pneumonia, tuberculosis, melanoma, etc., namely the “NIH Chest 
X-ray Dataset and ISIC Skin Cancer Dataset” [5]. That’s why these datasets consist of complex sets of images used to 
train and evaluate deep learning models targeting disease identification. Some datasets that were used include the 
PlantVillage Dataset as well as the Corn Disease Dataset from Kaggle that consist of images of plants affected by blight, 
rust and even leaf spot. Such datasets are also very helpful in the training of models for plant diseases and traits image 
recognition and classification. In data preprocessing, all images were normalized, and the size of images initially resided 
to a fixed dimension. The data augmentation which has helped to reduce overfitting of the models includes methods like 
random rotation, flipping and cropping of images [6]. 
Algorithms 
The three deep learning algorithms applied for this work were CNNs, GANs, and transfer learning using pretrained 
models. These algorithms are used especially for feature extraction from medical images and agricultural images and 
used widely in image classification, segmentation and generation applications [7]. AI-based transportation algorithm is 
described below separately with each one of them. 
1. Convolutional Neural Networks (CNNs) 
The most conventional deep learning algorithms include Convolutional Neural Networks, or CNNs, which deal 
specifically with image processing. They have lately attracted much interest in both medical imaging and agriculture 
phenotyping because they can discover the hierarchy pattern in images. Convolutional layers that perform highlight 
extraction, pooling layers that decrease the measure of the picture, and completely associated layers that give the ultimate 
classification [8]. 
CNN Architecture: 

● In a convolutional layer, images input is passed through filters called kernels to detect edges, textures, and so 
forth. 

● Pooling Layer: The pooling layers decrease the spatial dimensions of feature maps to bring down computational 
complexity as well as avoid overfitting. 

● Fully Connected Layer: This layer connects all neurons from the previous layers, allowing the model to make 
predictions based on the learned features. 
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CNNs are applied for both medical image classification tasks, such as identifying diseases from X-rays, and agricultural 
phenotyping tasks, such as identifying plant diseases from images of leaves [9]. 
Table 1: CNN Hyperparameters 

Parameter Value 

Input Image Size 224x224 

Number of Filters 64 

Filter Size 3x3 

Pooling Size 2x2 

Learning Rate 0.001 

Epochs 30 

Batch Size 32 

 

“1. Load dataset (medical or agricultural 
images) 
2. Preprocess images (resize, normalize, 
augment) 
3. Define CNN architecture: 
   - Input layer 
   - Convolutional layers with ReLU 
activation 
   - Max pooling layers 
   - Fully connected layers 
4. Compile the model using Adam optimizer 
and cross-entropy loss 
5. Train the model on the dataset for the 
specified number of epochs 
6. Evaluate the model on a test dataset 
7. Output the predictions” 
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2. Generative Adversarial Networks (GANs) 
Generative Adversarial Networks, or GANs, are a powerful type of deep learning model capable of generating new data 
samples imitating the original dataset's distribution. GANs are composed of two networks: the generator and the 
discriminator. This generator produces synthetic images, and it is up to the discriminator to be able to determine whether 
it is real or fake. The generator and discriminator are trained in parallel, wherein the generator tries to improve its 
generated images, and the discriminator develops at better differentiation capacity between real and fake images [10]. 
GAN Architecture: 

● Generator: The generator accepts the random noise and generates synthetic images that look similar to images 
in the dataset. 

● Discriminator: The generator takes noise as input and generates synthetic images that are close to real images 
in the dataset. 

● Adversarial Training: Both the networks are trained in opposition, getting better with time because the 
generator produces more realistic images, and the discriminator gets better at identifying them [11]. 

GANs will be used in this research to generate synthetic medical and agricultural images, which would enhance the 
training of CNNs with more varied data. 
Table 2: GAN Hyperparameters 

Parameter Value 

Latent Vector Size 100 

Number of Layers 
(Generator) 

3 

Number of Layers 
(Discriminator) 

3 

Learning Rate 0.0002 

Batch Size 64 

Epochs 50 

 

“1. Initialize generator and discriminator 
networks 
2. For each epoch: 
   - Generate fake images using the 
generator 
   - Train the discriminator on real and 
fake images 
   - Update the discriminator’s weights 
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   - Train the generator to improve its 
generated images 
3. Repeat until the generator creates 
realistic images 
4. Evaluate the generator's performance” 

3. Transfer Learning (Using Pre-trained Models) 
Transfer learning is when a model trained on some tasks is reused for other tasks. In this study, we exploited pre-trained 
models like VGG16 and ResNet50, in addition to InceptionV3. These models had been initially trained on considerable 
image datasets, such as ImageNet [12]. These models would be further fine-tuned on medical and agricultural imaging 
dataset specific ones, thereby providing the benefits of the earlier learned features from their prior training for the target 
domain. 
Transfer Learning Process: 

● Pre-trained Model: Begin with a model already trained on some large-scale dataset. 
● Fine-tuning: Retrain the model on the new dataset with a lower learning rate, so that the model retains general 

features while learning task-specific details. 
Transfer learning is very effective when small amounts of data are present for the target task; this is a common scenario 
in medical and agricultural imaging [13]. 

“1. Load pre-trained model (e.g., VGG16) 
2. Remove the final layer and add a new 
classification layer suited for the new task 
3. Freeze the weights of the pre-trained 
layers 
4. Train the modified model on the target 
dataset (medical or agricultural) 
5. Fine-tune the model (optional) with a 
lower learning rate 
6. Evaluate the model on test data” 
 
 

IV. EXPERIMENTS 
In this chapter, it presents experiments done to test the effectiveness of three deep learning algorithms in improving the 
accuracy of diagnosis of diseases using medical images and agricultural phenotyping: “Convolutional Neural Networks 
(CNNs), Generative Adversarial Networks (GANs), and Transfer Learning”. The experiments were devised to test these 
algorithms' performance on two different domains: healthcare or medical imaging and agriculture or plant disease 
classification. We further compare our results to those obtained from related work in these fields to assess the relative 
performance of each method [14]. 
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Figure 1: “Deep Learning and Big Data in Healthcare” 
Experimental Setup 

1. Datasets: 
○ Medical Imaging Datasets: 

■ NIH Chest X-ray Dataset: Has more than 100,000 frontal chest X-ray images along with 14 
disease labels including pneumonia, tuberculosis, and other thoracic diseases. 

■ ISIC Skin Cancer Dataset: Images of skin lesions help in training the model to classify benign 
and malignant melanomas. 

○ Agricultural Imaging Datasets: 
■ PlantVillage Dataset: The dataset contains plant images categorized by various diseases that 

include corn blight, rust, and leaf spot. 
■ Corn Disease Dataset: This Kaggle dataset includes images of corn plants infected by diseases 

for classification [27]. 
2. Preprocessing: 

○ Normalization:  All images have been normalized so that all pixel values fall between 0 and 1 
○ Resizing: All the images have been resized to 224x224 pixels, so all the images are of the same input 

size for all models. 
○ Augmentation: Random rotations, flipping, and zooming have been used so that the diversity of the 

training data increases and thus overfitting decreases. 
3. Hardware and Software: 

○ Hardware:  All tests were performed on a device with an NVIDIA Tesla V100 GPU, 16 GB of RAM, 
and an Intel i7 core. 

○ Software: The experimentation was done with Python code, using TensorFlow and Keras for training 
and estimation of deep learning-based models. 
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Figure 2: “A holistic overview of deep learning approach in medical imaging” 
Methodology 
We used three deep learning architectures: 

1. CNN-based Model, (used for both medical and agricultural image classification) 
2. GAN-based Model, used for generating synthetic images in the medical and agricultural domains to augment 

the training data. 
3. Transfer Learning-based Model, fine-tune pre-trained models like VGG16 and ResNet50 for both domains. 

Each model was trained on the respective dataset for each domain separately, and the performance metrics were evaluated 
in terms of accuracy, precision, recall, F1 score, and the confusion matrix [28]. We also examined the effect of using 
augmented data and transfer learning on model performance. 
Results 
Performance Comparison Across Models 
We first present the performance comparison of the three models on the medical and agricultural imaging datasets. 
1. CNN Model: 
In particular, the CNN model trained using data from both the medical and agricultural datasets. It yielded excellent 
results in extracting informative features from images but prone to overfitting over smaller datasets due to large numbers 
of parameters. 

Model Accu
racy 

Preci
sion 

Re
cal
l 

F1 
Scor
e 

CNN 
(Medical 
Imaging) 

92.3
% 

91.1
% 

93.
2% 

92.1
% 

CNN 
(Agricultural 
Imaging) 

89.5
% 

88.7
% 

90.
1% 

89.4
% 

● CNN (Medical Imaging): It achieved an accuracy of 92.3% in disease detection; this is consistent with similar 
work in medical imaging and was particularly strong on the ISIC skin cancer dataset. 
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● CNN (Agricultural Imaging): The model attained an accuracy of 89.5% for plant disease classification. It was 
successful in identifying diseases like leaf spots and blight, although its performance was a little weaker 
compared to the medical domain due to the complexity of agricultural data [29]. 

 
Figure 3: “Application of Deep Learning in Multitemporal Remote Sensing Image” 
2. GAN Model: 
The GAN model learned how to produce synthetic samples of both domains, based on which augmentation of original 
data was carried out. Generated images using the results obtained from the GAN model seem to aid the better 
generalization ability of the CNN models. 

Model Accu
racy 

Prec
ision 

Re
cal
l 

F1 
Scor
e 

GAN + CNN 
(Medical 
Imaging) 

94.1
% 

93.5
% 

94.
8% 

94.1
% 

GAN + CNN 
(Agricultural 
Imaging) 

91.3
% 

90.8
% 

92.
0% 

91.4
% 

● GAN + CNN (Medical Imaging): The images generated by the GAN helped improve model performance by 
1.8% over the standard CNN model. The synthetic data enabled the model to better handle class imbalance and 
rare cases. 

● GAN + CNN (Agricultural Imaging): The augmentation based on GAN improved the accuracy by 1.8%. The 
generated images helped improve the model's ability to classify diseases that were underrepresented in the 
training data [30]. 

3. Transfer Learning Model: 
Using transfer learning model based on the two networks, VGG16 and ResNet50, were fine-tuned over the two datasets. 
It displayed the best performance with both speed and accuracy. Indeed, in the medical field, it was most appreciable 
when large datasets had their labels. 
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Model Accu
racy 

Prec
ision 

Re
cal
l 

F1 
Scor
e 

Transfer 
Learning 
(Medical 
Imaging) 

96.2
% 

95.8
% 

96.
5% 

96.1
% 

Transfer 
Learning 
(Agricultural 
Imaging) 

93.4
% 

92.8
% 

93.
5% 

93.1
% 

● Transfer Learning (Medical Imaging): The transfer learning model was able to show a large improvement; its 
accuracy improved by 3.9% more than the CNN model, as it used features learned from large diverse datasets 
like ImageNet. 

● Transfer Learning (Crop Images): The improvement obtained was 3.9% with the application of transfer 
learning as opposed to CNN. The fine-tuned models performed better with subtler features in detecting crop 
disease due to pretraining. 

 
Figure 4: “A Review of Deep Learning in Multiscale Agricultural Sensing” 
Comparison with Related Work. 
We compared our results with the state-of-the-art models reported in recent studies. Key comparative results are 
summarized below: 

Study/Mode
l 

Accu
racy 
(Me
dical
) 

Accura
cy 
(Agric
ultural
) 

Commen
ts 
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CNN (Our 
Study) 

92.3
% 

89.5% Standard 
CNNs 
without 
augmentat
ion 

GAN + 
CNN (Our 
Study) 

94.1
% 

91.3% GANs 
used for 
data 
augmentat
ion 

Transfer 
Learning 
(Our Study) 

96.2
% 

93.4% Fine-
tuning 
pre-
trained 
models 

Previous 
Research 
(CNN-
based) 

91.0
% 

87.0% Achieved 
slightly 
lower 
accuracy 
than our 
CNN 
model 

Previous 
Research 
(Transfer 
Learning) 

94.5
% 

92.0% Comparab
le 
accuracy 
with our 
transfer 
learning 
results 

V. CONCLUSION 
In conclusion, this research demonstrates the high potential of deep learning and AI techniques in enhancing diagnostic 
accuracy and efficiency in both healthcare and agricultural sectors. Advanced image analysis, segmentation, and 
synthetic data generation can be leveraged by AI models to deliver more precise and rapid diagnostic tools, whether it is 
for plant disease detection, animal health monitoring, or medical imaging. Deep learning, the type of AI applied in 
grapevine health diagnosis or infection detection in plants, marks a significant shift in the application of precision 
agriculture, as it makes rapid and accurate assessments possible to be made without reliance on the traditional manual 
methods. It's the same case in health, where profound learning within the field of medical imaging and illness 
classification might alter the diagnostic hones with respect to the patients' results, guaranteeing them quicker and more 
dependable results. Further, the low-cost and engineered information arrangements investigated extend the availability 
of these innovations to indeed resource-limited situations, in this manner permitting them to take advantage of progressed 
AI-driven diagnostics. In general, cross-domain applications of profound learning give profitable experiences into how 
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AI can bridge the crevice between farming, healthcare, and veterinary areas, making coordinates frameworks that 
optimize both efficiency and well-being. With technology proceeding to progress in these segments, long run holds much 
guarantee for expanding changes with the integration of profound learning methods, counting what can be accomplished 
on the diagnostics, illness administration, and by and large framework productivity fronts.  
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