Open Access

Development Of Analytical Method And Validation For Estimation Of Quercetin And Monoammonium Glycyrrhizinate In Their Formulation

Mahammad Ishaq Beludari¹, A Rajendiran², Sudhir S Hunge³, Vijayakrishna C Aradhya⁴, Reehana Shaik⁵, Jitendra Annasaheb Kubde⁶, Yuvraj Limbaji Pandhare⁷ and Jiten Mishra⁸*

¹Department of pharmacy, College of applied sciences and pharmacy, University of Technology and Applied Sciences, Muscat, Oman.

²School of Pharmaceutical Sciences, CSJM University, Kanpur (U.P), India.

³P.G. Deptt. Of Chemistry, Chintamani College of Science, Pombhurna, Dist. Chandrapur, Maharashtra- 442918, Gondwana University, Gadchiroli (M.S.).

⁴Department of Pharmaceutical Analysis, National College of Pharmacy, Balraj Urs Road, Shimoga, Karnataka.

⁵Dept. of Pharmacy, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields,

Vaddeswaram, Andhra Pradesh, India.

⁶Shri Swami Samarth Institute of Pharmacy, Dhamangaon Rly. Amravati, Maharashtra.

⁷Shree Pushpasen Sawant College of Pharmacy wadi Humarmala Tal Kudal Dist sindhudurg Maharashtra.

⁸Roland Institute Of Pharmaceutical Sciences, Khodasingi, Berhampur, Ganjam, Odisha, Pin-760010.

Cite this paper as: Mahammad Ishaq Beludari, A Rajendiran, Sudhir S Hunge, Vijayakrishna C Aradhya, Reehana Shaik, Jitendra Annasaheb Kubde, Yuvraj Limbaji Pandhare, Jiten Mishra (2024). Development Of Analytical Method And Validation For Estimation Of Quercetin And Monoammonium Glycyrrhizinate In Their Formulation. *Frontiers in Health Informatics*, 13 (7) 1016-1026

ABSTRACT

A unique, rapid, straightforward, and precise UV spectrophotometric approach for the simultaneous quantification of quercetin and Monoammonium glycyrrhizinate was developed and validated. Ethanol served as a solvent while simultaneous equations were employed to quantify quercetin and Monoammonium glycyrrhizinate at wavelengths of 377 nm and 248 nm, respectively. The concentration ranges for quercetin and Monoammonium glycyrrhizinate were 2 to $10~\mu g/ml$ and 10 to $60~\mu g/ml$, respectively, adhering to Beer's law. This methodology was validated in accordance with ICH requirements on accuracy, linearity, precision, LOD, and LOQ. Given that the %RSD was below 2, this method was deemed accurate. The proposed approach for the routine analysis of quercetin and monoammonium glycyrrhizinate in gel formulation has demonstrated efficiency, specificity, accuracy, and precision.

KEYWORDS: Quercetin, Monoammonium glycyrrhizinate, Estimation, Development and Validation.

INTRODUCTION

A key aspect of developing analytical methods is the simultaneous estimate of bioactive chemicals in pharmaceutical formulations, especially when working with complex mixtures [1]. Quercetin and monoammonium glycyrrhizinate are two such compounds of significant interest due to their numerous therapeutic properties [2]. Quercetin, a flavonoid, is known for its potent antioxidant, anti-inflammatory, and anticancer effects, while monoammonium glycyrrhizinate, derived from licorice root, has been shown to possess anti-inflammatory, hepatoprotective, and immune-boosting properties [3, 4]. Both compounds are often included in various pharmaceutical preparations, including tablets, creams, and syrups, aimed at managing conditions such as inflammation, allergies, and liver diseases [5].

2024: Vol 13: Issue 7

Open Access

The estimation of these compounds in their pharmaceutical formulations requires a robust and reliable analytical method that ensures accurate, precise, and reproducible results. Method development and validation are crucial in ensuring that the analytical procedure meets regulatory standards and provides consistent, trustworthy data for quality control and product safety [6, 7].

In this context, the analytical method development process for quercetin and monoammonium glycyrrhizinate typically involves choosing an appropriate technique that can resolve these compounds from the formulation matrix and other excipients [8]. High-performance liquid chromatography (HPLC) is often favored due to its sensitivity, precision, and ability to separate complex mixtures. A thorough validation of the developed method, including parameters such as accuracy, linearity, specificity, precision, and LODand LOQ, is essential to confirm the reliability and robustness of the method for routine analysis [9, 10].

In this work, a precise, accurate, and repeatable analytical approach for the simultaneous measurement of quercetin and monoammonium glycyrrhizinate in pharmaceutical formulations is developed and validated. In order to ensure that the active ingredients are present in the proper concentrations and that the products satisfy the relevant pharmacopoeial standards, the goal is to develop a validated method that can be used for quality control in the production of these formulations [11-13].

MATERIALSANDMETHODS:

Instruments and Equipments:

A double beam UV spectrophotometer with a wavelength precision of 0.5 nm and a spectral width of 2 nm, two 1 cm matched quartz cells, a digital balance, and a software program called UVProbe2.0. The proposed analytical technique was formulated and validated utilising an ultrasonicator, volumetric flasks, and borosilicate glass pipettes [14, 15].

Material and Reagents

Quercetin was bought from Merck Chemicals, while Monoammonium glycyrrhizinate was bought from a nearby source. Every reagent utilised in this test was of analytical quality [16].

Selection of solvent:

In accordance with Indian Pharmacopoeia requirements for selecting a universal solvent, the solubility of pharmaceuticals was evaluated across several solvents. Polar and nonpolar solvents were utilised to ascertain solubility. Ethanol was shown to be the universal solvent in the analysis of monoammonium glycyrrhizinate and quercetin using the suggested approach [17, 18].

DETERMINATIONOFWAVELENGTH MAXIMA

Stock Solution Preparation:

To make the solution, 10 mg of quercetin and 10 mg of monoammonium glycyrrhizinate were dissolved in 100 millilitres of ethanol, yielding a concentration of 100 μ g/ml. Using ethanol as a blank and a UV-visible double beam spectrophotometer, the UV spectrum was captured in the 200–400 nm region [19, 20].

Preparation of working solution

Considering the previously recommended stock solution Onemillilitre of each drug solution was introduced into a 10-milliliter volumetric flask, and the volume was supplemented with ethanol to achieve a concentration of 10 μ g/ml. The material was analysed with a UV-Vis spectrophotometer in the 200–400 nm range, with ethanol as a blank. The wavelength corresponding to the maximum absorbance, or λ -max, was determined to be 377 nm for quercetin and 248 nm for monoammonium glycyrrhizinate [21, 22].

2024; Vol 13: Issue 7 Open Access

Calibration Curve Preparation:

Preparation stock solution of Quercetin:

To prepare a 100 μ g/ml stock solution, 10 mg of pure quercetin was dissolved in 100 ml of ethanol. Concentrations of 2μ g/mlto 10μ g/ml must be generated. The absorbance of the produced dilutions at the designated wavelength was then measured [23-25].

Preparation stock solution of Monoammonium Glycyrrhizinate:

To prepare a 100 μ g/ml stock solution, 10 mg of pure Monoammonium glycyrrhizinate was dissolved in 100 ml of ethanol. The concentrations prepared were 10 μ g/mlto 60 μ g/ml. The absorbance of the produced dilutions at the designated wavelength was then measured.

A calibration curve for concentration vs. absorbance was generated, with concentration plotted on the x-axis and absorbance on the y-axis, resulting in a linear relationship. The straight line demonstrated linearity within the concentration ranges of 2 to $10 \mu g/ml$ for quercetin and $10 to 60 \mu g/ml$ for monoammonium glycyrrhizinate [26-31].

Determination of Isoabsorptive Point and Wavelength:

Solutions of both drugs at a concentration of $10 \,\mu\text{g/mL}$ were produced from the working stock solution and analysed by scanning from 200 to 400 nm, utilising phosphate buffer (pH 7.4) as a blank. The overlaid spectrum was also acquired to ascertain the isoabsorptive point [27, 32-38].

Analysis of Gel formulationSamplepreparation

A quantity of gel equivalent to 10 mg of quercetin and 10 mg of monoammonium glycyrrhizinate was transferred to a 100 ml volumetric flask, dissolved in adequate ethanol, sonicated, and the volume was adjusted with ethanol to obtain a stock solution of 100 μ g/ml of quercetin and monoammonium glycyrrhizinate. This process was used to quantify the pharmaceuticals in the gel formulation. After filtering the solution through Whatman filter paper number 41, the filtrate was suitably diluted to attain final concentrations of 10 μ g/ml for both monoammonium glycyrrhizinate and quercetin. We quantified the absorbance of this solution at the designated wavelengths and used the results to the pertinent equations to ascertain the concentrations. Table 5 displays the outcomes of this strategy [28, 39-44].

VALIDATIONOFTHEDEVELOPEDMETHOD

Linearity:

The established techniques evaluated the standard stock solution dilutions of both medicines. The Beer-Lambert concentration range for quercetin and monoammonium glycyrrhizinate was determined to be 2 to 10 μ g/ml and 10 μ g/ml to 60 μ g/ml, respectively. Table 1 displays the linearity data for the procedure [45-53].

Accuracy:

When test findings correspond with the true value, they are deemed accurate. Recovery studies employing the conventional addition method were performed at three specific levels (80%, 100%, and 120%) to assess the validity of the proposed methodology. A standard drug solution was included into a previously analysed sample solution, and the drug content % was subsequently ascertained. The subsequent formula was employed to ascertain the % recovery of the added pure drug:

Open Access

% recovery = $[(Ct-Cs)/Ca] \times 100$

Where,

Ct = Total drug concentration measured after standard addition

Cs = Drug concentration in the formulation sample

Ca = Drug concentration added to formulation

The result of recovery studies are reported in Table 2.

Precision:

Inter-dayandIntra-dayprecision

The formulation analysis, conducted six times at the same concentration, confirmed the method's repeatability. We calculated the RSD as a percentage. The intraday and interday analyses, which involved doing the formulation analysis three times in one day, every hour, and over three days in a row, confirmed that the method was a good middle ground. We calculated the quantity of medication and the percentage relative standard deviation (RSD). Table 3 displays the results of the intraday and inter-day precision analyses [54-64].

Ruggedness Study

It illustrates the variability of accuracy between laboratories, including across analysts. The method's robustness was assessed thrice with identical equipment and varying analysts. The results were presented in Table 4 as a percentage RSD [65-74].

Limit of Detection and Limit of Quantitation:

The calibration curve was utilised to ascertain the LOD and the LOQ independently. The LOD and LOQ were established utilising the RSD of a regression line or the standard deviation of the y-intercepts of regression lines. The mean slope and response standard deviation (intercept) were utilised to calculate the LOD and LOQ. The LOD and LOQ and monoammonium glycyrrhizinate were determined using calibration standards [75-84]. The results of LOD and LOQ are shown in Table 1.

LOD=
$$3.3\sigma/S$$
 and LOQ= $10\sigma/S$

Where, S is the slope of the calibration curve and

σ is the standard deviation of response (intercept).

RESULTS AND DISCUSSION:

The primary need for developing an analytical method using the absorbance ratio method (Q-analysis) is that the entire spectrum must comply with Beer's law at all wavelengths, a condition satisfied by both drugs in question. Two wavelengths were utilised to evaluate the pharmaceuticals: the calibration curves for both compounds were established at the iso-absorptive point of 268 nm. Figure 3 illustrates the superimposed UV absorption spectra of Monoammonium glycyrrhizinate (248 nm) and quercetin (377 nm), highlighting the iso-absorptive point (268 nm) in ethanol. The validation parameters were analysed at each wavelength for the proposed method. At both wavelengths (377 nm and 248 nm), the absorbance and concentration of quercetin and Monoammonium glycyrrhizinate exhibited linearity within the ranges of 2 to 10 μ g/mL and 10 to 60 μ g/mL, respectively. In the examined concentration range, a strong correlation between concentration and absorbance was observed, as evidenced by the regression coefficients for quercetin and Monoammonium glycyrrhizinate, which were 0.9969 and 0.9974, respectively. The detection limits for Monoammonium glycyrrhizinate and quercetin were determined to be 3.49 g/ml and 2.86 g/ml, respectively. The quantification limits for Monoammonium glycyrrhizinate and quercetin were determined to be 10.59 and 6.66 g/ml, respectively. The precision

2024; Vol 13: Issue 7 Open Access

was assessed as satisfactory, with both intraday and interday precision being below two (<2). A high recovery rate indicates that the proposed method is precise when employing the typical addition technique. The range for Quercetin was 100.3% to 100.66%, whereas Monoammonium glycyrrhizinate range was 98.33% to 100.18%. The calculated concentrations of quercetin and Monoammonium glycyrrhizinate in the gel formulation were 99.8% and 99.6%, respectively.

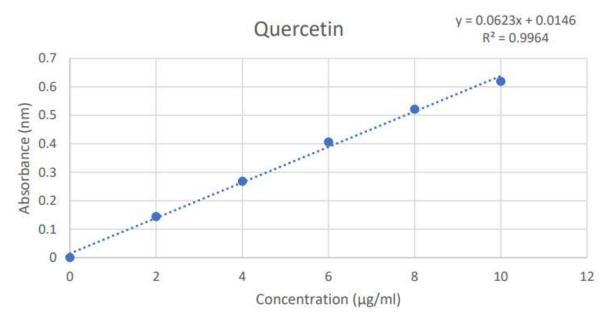


Figure1: Calibration curve of Quercetin

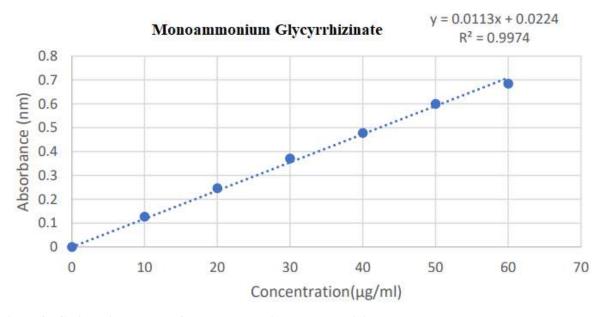


Figure 2: Calibration curve of Monoammonium glycyrrhizinate

Table1: Interpretation of validation parameter

Parameter	Quercetin	Monoammonium Glycyrrhizinate
-----------	-----------	------------------------------

Open Access

Wavelength maxima(nm)	377nm	248nm		
Range ofLinearity(µg/ml)	2 to 10µg/ml	10 to 60μg/ml		
Equation of Linearity	y=0.0623x+0.0146	y=0.0113+0.0224		
RSD	0.9964	0.9974		
Slope(b)	0.0623	0.0113		
Intercept(a)	0.0146	0.0224		
LOD	2.86	3.49		
LOQ	6.66	10.59		

Table2:% Recovery Sample Drug

Drug concentration	% Drug Recovery	Concentration added(µg/ml)	TotalConc.rec overed	%Drug Recovered
(μg/ml)		μααεα(μς, πι)	(μg/ml)	Trees vereu
	80	32	72.22	100.3
(40μg/ml)	100	40	80.63	100.78
	120	48	88.5	100.66
Monoammoniumgl	80	8	17.70	98.33
ycyrrhizinate (10µg/ml)	100	10	19.96	99.8
(10µg/1111)	120	12	22.04	100.18

Table3:Precision study

Conc(µg/ml)	Interday precision		Intraday pr	Intraday precision		
	SD	%RSD	SD	%RSD		
Quercetin	0.0010	0.524	0.0015	0.658		
Monoammoniumgl ycyrrhizinate	0.0013	0.96	0.0014	0.718		

Table4: Ruggedness study

Drug	SD	%RSD
Quercetin	0.0035	0.602
Monoammonium glycyrrhizinate	0.001	0.524

Table5: Analysis of Gel formulation

Drug	Labeled	claim %	Estimated	% RSD	%
	(%w/w)			-	Recovery

2024; Vol 13: Issue 7					Open Access
Quercetin	1%	98.49	0.48	99.8	
Monoammonium glycyrrhizinate	1%	98.32	0.96	99.6	

Conclusion

Quercetin and Monoammonium glycyrrhizinate were effectively quantified concurrently in bulk and medicinal gel formulations utilising the proposed absorbance ratio method (Q-analysis). The process was found to be simple, accurate, exact, and reliable. It is immediately and straightforwardly applicable to the analysis of the Quercetin and Monoammonium glycyrrhizinate combination medical gel formulation. Moreover, the present methodology is more rapid and cost-effective than chromatographic techniques. Thus, the proposed method provides an alternative procedure for assessing the quality of Monoammonium glycyrrhizinate and quercetin in pharmaceutical gel formulations.

DECLARATIONS:

Ethics approval and consent to participate:

Not applicable.

Consent for publication:

All the authors approved the manuscript for publication.

Availability of data and material:

All required data is available.

Competing interests:

All authors declare no competing interests.

Funding:

Not applicable.

REFERENCES:

- 1. Khera D, Kohli K, Parmar N. Development and validation of stability-indicating HPTLC method for determination of glycyrrhizic acid in bulk drug and pharmaceutical formulations. Journal of liquid chromatography & related technologies. 2011 Sep 1;34(15):1502-17.
- 2. Zou Q, Zhan Y, Wei P, Ouyang P. Isolation and characterization of related impurities of monoammonium glycyrrhizinate and development of RP-HPLC method for quality control study. Journal of Liquid Chromatography & Related Technologies®. 2009 Jul 21;32(13):1953-68.
- 3. Cheng M, Zhang J, Yang L, Shen S, Li P, Yao S, Qu H, Li J, Yao C, Wei W, Guo DA. Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia. 2021 Mar 1;149:104803.
- 4. Narasimhaji CV, Sharma H, Shanmugaim M, Velvizhi D, Singh A, Singh R, Srikanth N, Acharya R. HPTLC detection, isolation-optimization, structural confirmation of in-house natural sweetener (Glycyrrhizin) from successive root extract of Glycyrrhizaglabra Linn. Journal of Liquid Chromatography & Related Technologies. 2024 Nov 21:1-4.
- 5. Patole V, Kapare H, Mahore J, Bhimanwar R, Awari D, Jadhav P. Development and evaluation of gastro retentive drug delivery system of monoammonium glycyrrhizinate for the management of gastric ulcer. Journal of Research in Pharmacy. 2023 Sep 1;27(5).
- 6. Mukhopadhyay N, Ahmed R, Mishra K, Sandbhor R, Sharma RJ, Kaki VR. A validated, precise TLC-densitometry method for simultaneous quantification of mahanimbine and koenimbine in marketed herbal formulations. Future Journal of Pharmaceutical Sciences. 2024 Feb 20;10(1):23.
- 7. Li H, Chen BT, Liu L, Liu Q. Simultaneous determination of six compounds in licorice and related Chinese herbal preparations. Chromatographia. 2009 Feb;69:229-35.

2024; Vol 13: Issue 7

- 8. Aguilar-Rosas I, Alcalá-Alcalá S, Llera-Rojas V, Ganem-Rondero A. Preparation and characterization of mucoadhesive nanoparticles of poly (methyl vinyl ether-co-maleic anhydride) containing glycyrrhizic acid intended for vaginal administration. Drug Development and Industrial Pharmacy. 2015 Oct 3;41(10):1632-9.
- 9. Liu J, Dai SY, Ye LM, Fu CM. Study on the Chemical Profiling of FangfengTongsheng Pills by HPLC. Indian Journal of Pharmaceutical Sciences. 2016 May 1;78(3).
- 10. Chu S, Niu Z, Guo Q, Bi H, Li X, Li F, Zhang Z, He W, Cao P, Chen N, Sun X. Combination of monoammonium glycyrrhizinate and cysteine hydrochloride ameliorated lipopolysaccharide/galactosamine-induced acute liver injury through Nrf2/ARE pathway. European Journal of Pharmacology. 2020 Sep 5;882:173258.
- 11. Zöllner T, Schwarz M. Herbal Reference Standards: applications, definitions and regulatory requirements. RevistaBrasileira de Farmacognosia. 2013 Jan 1;23(1):1-21.
- 12. Cao JF, Gong Y, Wu M, Yang X, Xiong L, Chen S, Xiao Z, Li Y, Zhang L, Zan W, Zhang X. Exploring the mechanism of action of licorice in the treatment of COVID-19 through bioinformatics analysis and molecular dynamics simulation. Frontiers in pharmacology. 2022 Sep 2;13:1003310.
- 13. Zhang G, Guo J, Zhao N, Wang J. Study of interaction between kaempferol–Eu3+ complex and DNA with the use of the Neutral Red dye as a fluorescence probe. Sensors and Actuators B: Chemical. 2010 Jan 29;144(1):239-46.
- 14. Wen J, Zhang JW, Lyu YX, Zhang H, Deng KX, Chen HX, Wei Y. Ethanol extract of Glycyrrhiza uralensis fisch: Antidiarrheal activity in mice and contraction effect in isolated rabbit jejunum. Chinese journal of integrative medicine. 2023 Apr;29(4):325-32.
- 15. Stecanella LA, Bitencourt AP, Vaz GR, Quarta E, Silva Junior JO, Rossi A. Glycyrrhizic acid and its hydrolyzed metabolite 18β-glycyrrhetinic acid as specific ligands for targeting nanosystems in the treatment of liver cancer. Pharmaceutics. 2021 Oct 26;13(11):1792.
- 16. Sen S. Liposome-encapsulated glycyrrhizin alleviates hyperglycemia and glycation-induced iron-catalyzed oxidative reactions in streptozotocin-induced diabetic rats. Journal of Liposome Research. 2022 Oct 2;32(4):376-85.
- 17. Elena DL. Pharmacognostic methods for analysis of herbal drugs, According to European Pharmacopoeia. Promising Pharmaceuticals. 2012 May 23:38-62.
- 18. Surana KR, Jadhav PS, Shewale HS, Wagh DB, Mahajan SK, Musale JV. Insilico and Biological Evaluation of Anti-Inflammatory Activity of synthesized Benzimidazoles Derivatives. Biosciences Biotechnology Research Asia. 2024 Sep 30;20(3):1241-53.
- 19. Ranjith K, Anumolu DP, Pulusu VS, Keservani RK, Kachave RN, Tiwari N, Lohani H, Mundada A. Method Development & Validation Of Stability Indicating Assay Method Of Clindamycin In Adapalene And Clindamycin Gel Formulation By RP-HPLC. REDVET-Revista electrónica de Veterinaria. 2024;25(1S):2024.
- 20. Balekundri A, Ahire ED, Surana KR, Keservani RK, Kshirsagar SJ. Role of Physical Exercise in Overall Metabolic Health and Body Recomposition. InBody Recomposition 2025 (pp. 417-426). CRC Press.
- 21. Khairnar SJ, Ahire ED, Jagtap MR, Surana KR, Kshirsagar SJ, Keservani RK. Management and Prevention of Diseases by Flavonoids. InAdvances in Flavonoids for Human Health and Prevention of Diseases 2024 (pp. 47-71). Apple Academic Press.
- 22. Sukhia A, Gujarathi NA, Patil TS, Aher A, Rane B, Keservani RK. Antioxidants as Nutraceuticals in the Prevention and Treatment of Cardiovascular Disease. InAntioxidants as Nutraceuticals 2025 (pp. 127-156). Apple Academic Press.
- 23. Fakir JS, Ahire CM, Surana KR, Kalam A, Ahamad AA, Davanage MD. Formulation and Evaluation of Antibacterial and Anti-Inflammatory Emulgel Containing Eugenia caryophyllus Buds Extract. Biosciences Biotechnology Research Asia. 2024 Sep 30;21(3):1183-96.
- 24. Aher SN, Sonawane SN, Sonawane PR, Surana KR, Mahajan SK, Patil DM. Insilico Drug Design, Synthesis and Evaluation of Anti-inflammatory Activity Pyrimidine Analogue. Biosciences Biotechnology Research Asia. 2024 Jun 10;21(2).

- 25. Panchabhai N, Jadhav H, Shelar SD, Sukhia A, Gujarathi NA, Keservani RK. Nutraceutical Antioxidants In The Prevention And Treatment Of Diabetes Mellitus. InAntioxidants as Nutraceuticals 2025 (pp. 225-262). Apple Academic Press.
- 26. Goulas V, Stylos E, Chatziathanasiadou MV, Mavromoustakos T, Tzakos AG. Functional components of carob fruit: Linking the chemical and biological space. International journal of molecular sciences. 2016 Nov 10;17(11):1875.
- 27. Zhang S, Luo H, Tan D, Peng B, Zhong Z, Wang Y. Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: A review based on clinical evidence and experimental research. Phytomedicine. 2022 Jul 20;102:154202.
- 28. Fang X, Jiang XF, Zhang YP, Zhou CL, Dong YJ, Lv GY, Chen SH. Exploring the Action Mechanism and Validation of the Key Pathways of Dendrobium officinale Throat-clearing Formula for the Treatment of Chronic Pharyngitis Based on Network Pharmacology. Combinatorial Chemistry & High Throughput Screening. 2024 Feb 2;27(3):479.
- 29. Aher P, Surana K, Ahire E, Patil D, Sonawane D, Mahajan S. Development and validation of RP-HPLC method for quantitative determination of 4-amino benzene sulphonamide in sulphonamide hydrochloride. Trends in Sciences. 2023 Mar 15;20(6):5209-.
- 30. Yeola CA, Sonawane VN, Sonawane VN, Surana KR, Patil DM, Sonawane DD. Development and Validation of Simple UV-Spectrophotometric Method for Estimation of Diclofenac Sodium. Asian Journal of Pharmaceutical Analysis. 2023;13(3):183-9.
- 31. Sonawane VN, Yeola CA, Sonawane VN, Surana KR, Patil DM, Sonawane DD. Estimation of Paracetamol in various brands of Paracetamol Tablets and their Comparative Study. Asian Journal of Pharmaceutical Analysis. 2023;13(3):155-61.
- 32. Suryavanshi A, Vandana, Shukla YK, Kumar V, Gupta P, Asati V, Mahapatra DK, Keservani RK, Jain SK, Bharti SK. MEK inhibitors in oncology: a patent review and update (2016–present). Expert Opinion on Therapeutic Patents. 2024 Oct 2;34(10):963-1007.
- 33. Keservani RK, Roy UB, Aranha I, Jyothi SR, Premalatha SJ, Yadav L, Shukla K. Neurodegeneration and motor deficits. In Review on Diverse Neurological Disorders 2024 Jan 1 (pp. 299-306). Academic Press.
- 34. Tiwari G, Gupta M, Devhare LD, Tiwari R. Therapeutic and phytochemical properties of thymoquinone derived from Nigella sativa. Curr Drug Res Rev., 16, 145–156 (2024).
- 35. Tiwari R, Khatri C, Tyagi LK, Tiwari G. Expanded therapeutic applications of Holarrhena antidysenterica: A review. Comb Chem High Throughput Screen., 27, 1257–1275 (2024).
- 36. Tiwari G, Tiwari R, Kaur A. Pharmaceutical considerations of translabial formulations for treatment of Parkinson's disease: A concept of drug delivery for unconscious patients. Curr Drug Deliv., 20, 1163–1175 (2023).
- 37. Tiwari R, Tiwari G, Parashar P. Theranostics applications of functionalized magnetic nanoparticles. In Multifunctional and targeted theranostic nanomedicines: Formulation, design and applications. Singapore: Springer Nature Singapore., 361–382 (2023).
- 38. Tiwari R, Mishra J, Devhare LD, Tiwari G. An updated review on recent developments and applications of fish collagen. Pharma Times, 55, 28–30 (2023).
- 39. Tiwari R, Tiwari G, Mishra S, Ramachandran V. Preventive and therapeutic aspects of migraine for patient care: An insight. Curr Mol Pharmacol., 16, 147–160 (2023).
- 40. Tiwari R, Pathak K. Local drug delivery strategies towards wound healing. Pharmaceutics, 15, 634 (2023).
- 41. Tiwari R, Tiwari G, Sharma S, Ramachandran V. Exploration of herbal extract-loaded phyto-phospholipid complexes (phytosomes) against polycystic ovarian syndrome: Formulation considerations. Pharm Nanotechnol., 11, 44–55 (2023).
- 42. Tiwari G, Chauhan A, Sharma P, Tiwari R. Nutritional values and therapeutic uses of Capra hircus milk. Int J Pharm Investig., 12, (2022).
- 43. Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, et al. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release, 346, 71–97 (2022).

- 44. Tiwari R, Tiwari G, Lahiri A, Ramachandran V, Rai A. Melittin: A natural peptide with expanded therapeutic applications. Nat Prod J., 12, 13–29 (2022).
- 45. Tiwari G, Singh G, Shekhar R, Tiwari R. Development and qualitative evaluation of periodontal gel containing an antibacterial agent for periodontal disease. Res J Pharm Technol., 15, 5225–5231 (2022).
- 46. Tiwari R, Rathour K, Tyagi LK, Tiwari G. Eggshell: An essential waste product to improve dietary calcium uptake. Pharmacophore, 13, 32–40 (2022).
- 47. Tiwari R, Singh I, Gupta M, Singh LP, Tiwari G. Formulation and evaluation of herbal sunscreens: An assessment towards skin protection from ultraviolet radiation. Pharmacophore, 13, 41–49 (2022).
- 48. Kaur A, Tiwari R, Tiwari G, Ramachandran V. Resveratrol: A vital therapeutic agent with multiple health benefits. Drug Res., 72, 5–17 (2022).
- 49. Tiwari G, Tiwari R. Assessment of nutraceutical potential of herbs for promoting hair growth: Formulation considerations of herbal hair oil. Open Dermatol J., 15, (2021).
- 50. Tiwari R, Lahiri A, Tiwari G, Vadivelan R. Design and development of mupirocin nanofibers as medicated textiles for treatment of wound infection in secondary burns. Int J Pharm Sci Nanotechnol., 14, 5672–5682 (2021).
- 51. Singh S, Tiwari R, Tiwari G. Importance of artificial intelligence in the medical device and healthcare sector. Pharma Times, 53, 21–24 (2021).
- 52. Tiwari R, Tiwari G, Yadav A, Ramachandran V. Development and evaluation of herbal hair serum: A traditional way to improve hair quality. Open Dermatol J., 15, (2021).
- 53. Tiwari R, Tiwari G, Ramachandran V, Singh A. Non-conventional therapy of lethal pneumonia symptoms and viral activity of SARS-CoV-2 during COVID-19 infection using bee venom compound, melittin: A hypothesis. Pharma Times, 53, 14–18 (2021).
- 54. Tiwari R, Tiwari G, Lahiri A, Vadivelan R, Rai AK. Localized delivery of drugs through medical textiles for treatment of burns: A perspective approach. Adv Pharm Bull., 11, 248 (2021).
- 55. Tiwari R, Tiwari G, Singh R. Allopurinol-loaded transferosomes for the alleviation of symptomatic after-effects of gout: An account of pharmaceutical implications. Curr Drug Ther., 15, 404–419 (2020).
- 56. Shukla R, Tiwari G, Tiwari R, Rai AK. Formulation and evaluation of the topical ethosomal gel of melatonin to prevent UV radiation. J Cosmet Dermatol., 19, 2093–2104 (2020).
- 57. Tiwari G, Tiwari R, Singh R, Rai AK. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally. Nanosc Nanotechnol-Asia, 10, 12–20 (2020).
- 58. Patel M, Thakkar A, Bhatt P, Shah U, Patel A, Solanki N, et al. Prominent targets for cancer care: Immunotherapy perspective. Curr Cancer Ther Rev., 19, 298–317 (2023).
- 59. Patel BA. Permeation enhancement and advanced strategies: A comprehensive review of improved topical drug delivery. Int Res J Mod Eng Technol Sci., 6, 6691–6702 (2024).
- 60. Patel BA. Niosomes: A promising approach for advanced drug delivery in cancer treatment.
- 61. Shah U, et al. Atorvastatin's reduction of Alzheimer's disease and possible alteration of cognitive function in midlife as well as its treatment. CNS Neurol Disord Drug Targets, 22, 1462–1471 (2023).
- 62. Patel N, et al. Investigating the role of natural flavonoids in VEGFR inhibition: Molecular modeling and biological activity in A549 lung cancer cells. J Mol Struct., 1322, 140392 (2025).
- 63. Vijapur LS, et al. Formulation standardization and quality control of polyherbal formulation for treatment of type 2 diabetes mellitus. Nanotechnol Percept., 20, 775–783 (2024).
- 64. Patel V, et al. Eco-friendly approaches to chromene derivatives: A comprehensive review of green synthesis strategies. Curr Top Med Chem., (2024).
- 65. Patil A, et al. Preparation, optimization, and evaluation of ligand-tethered atovaquone-proguanil-loaded nanoparticles for malaria treatment. J Biomater Sci Polym Ed., 1–32 (2024).

2024; Vol 13: Issue 7

- 66. Patel BA, Sachdeva PD. Evaluations of anti-asthmatic activity of roots of Moringa oleifera Lam. in various experimental animal models. Inventi Impact Planta Activa, (2011).
- 67. Patel D, et al. Review on therapeutic diversity of oxazole scaffold: An update. ChemSelect, 9, e202403179 (2024).
- 68. Narendra A, Annapurna MM. Development and validation of stability indicating HPLC method for the determination of Fluoromethalone in eye drops formulations. Acta Sci. Pharm. Sci., 2, 07-14 (2018).
- 69. Annapurna MM, Chitaranjan M, Narendra A. Stability-indicating liquid chromatographic method for the determination of Letrozole in pharmaceutical formulations. Journal of Pharmaceutical Analysis., 2(4), 298-305 (2012).
- 70. Annapurna MM, Narendra A, Venkatesh B, Susmitha M. Stability indicating liquid chromatographic method for the determination of Bimatoprost in ophthalmic solutions. J Chem Pharm Sci., 10, 778-81 (2017).
- 71. Beskan U, Tuna Yildirim S, Algin Yapar E. An overview of analytical method validation. Universal Journal of Pharmaceutical Research 2020; 5(1): 47-52.https://doi.org/10.22270/ujpr.v5i1.362
- 72. Aktaş AH, Muhi Allaw Ahbabi A. Simultaneous determination of valsartan and hydrochlorothiazide by first-order derivative-zero crossing UV-visible spectrophotometric method. Universal Journal of Pharmaceutical Research 2022; 7(4):7-10.https://doi.org/10.22270/ujpr.v7i4.808
- 73. Aktaş AH, Sari H. Prevalence and risk factors of intestinal parasites, malnutrition, and anemia among orphan children in Sana'a city, Yemen. Universal Journal of Pharmaceutical Research 2023; 8(2):40-43.https://doi.org/10.22270/ujpr.v8i2.924
- 74. Vani R, Sunitha M. Analytical method development and validation for the determination of Omeprazole and Aspirin using reverse phase HPLC method in bulk and dosage form. Universal Journal of Pharmaceutical Research 2017; 2(4): 25-28.http://doi.org/10.22270/ujpr.v2i4.R6
- 75. Cengiz G, Şahiner A, Algin Yapar E, Kara BA, Sindhu RK. Comparison and evaluation of pharmacopoeial methods for the assessment of potency of antibiotics. Universal Journal of Pharmaceutical Research 2021; 6(3):37-45.https://doi.org/10.22270/ujpr.v6i3.604
- 76. Gamil AM, Hamad MA. Validation of HPLC method for simultaneous determination of Pseudoephedrine HCl, Guaifenesin, Chlor-pheniramine maleate and Dextro-methorphan HBr. Universal Journal of Pharma-ceutical Research 2020; 5(5):53-60.https://doi.org/10.22270/ujpr.v5i5.488
- 77. Eissa ME. Pharma's nitrosamine challenge: A review of a call for vigilance. Universal Journal of Pharmaceutical Research 2024; 9(3): 67-76. http://doi.org/10.22270/ujpr.v9i3.1119
- 78. Aktaş AH. UV spectroscopy determination of cilazapril and hydrochlorothiazide active agents used in the treatment of hypertension. Universal Journal of Pharmaceutical Research 2020; 5(6):49-51. https://doi.org/10.22270/ujpr.v5i6.512
- 79. Narendra A, Deepika D, Annapurna MM. Validated LC method for the estimation of Dorzolamide HCl (carbonic anhydrase inhibitor) in ophthalmic solutions. Journal of Chemistry., 9 (3), 1238-1243 (2012).
- 80. Narendra A, Annapurna MM. Development and validation of stability indicating HPLC method for the determination of Fluoromethalone in eye drops formulations. Acta Sci. Pharm. Sci., 2, 07-14 (2018).
- 81. Annapurna MM, Tejasri P, Narendra A. Study of Forced Degradation behavior of Atazanavir Research Journal of Pharmacy and Technology., 11 (8), 3693-3697 (2018).
- 82. Narendra A, Deepika D, Annapurna MM. Liquid chromatographic method for the analysis of Brimonidine in ophthalmic formulations. Journal of Chemistry., 9 (3), 1327-1331 (2012).
- 83. Narendra A, Ravi Kumar K, Annapurna MM. Development and validation of the stability indicating liquid chromatographic method for Rifaximin-an antibiotic. Journal of Drug Delivery and Therapeutics., 3 (2), 18-25 (2013).
- 84. Narendra A, Deepika D, Annapurna MM. Validated LC method for the estimation of Dorzolamide HCl (carbonic anhydrase inhibitor) in ophthalmic solutions. Journal of Chemistry., 9 (3), 1238-1243 (2012).